

Contents lists available at SciVerse ScienceDirect

Journal of Molecular Structure

journal homepage: www.elsevier.com/locate/molstruc

Synthesis, structure and properties of $(V^{IV}O)_2M^{II}$ (M = Cu, Zn) trinuclear complexes derived from a new macrocyclic oxamido vanadium (IV)-oxo ligand

Hui Hu, Fan Yang, Rui-Hong Zhang, Yan-Hong Zhang, Da-Ying Liu, Guang-Ming Yang*

Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Nankai University, Tianjin 300071, PR China

HIGHLIGHTS

- ► A novel macrocyclic oxamidato-bridged vanadium (IV)-oxo mononuclear ligand has been prepared.
- ► Two new trinuclear complexes have been synthesized using VOL as a precursor.
- ► TGA showed thermal stability of the two trinuclear complexes is higher than the mononuclear.
- ▶ EPR spectra indicated the three oxo-vanadium samples remained in the active +4 oxidation state.

ARTICLE INFO

Article history: Received 14 September 2012 Received in revised form 31 October 2012 Accepted 3 November 2012 Available online 23 November 2012

Keywords: Macrocyclic vanadium (IV)-oxo ligand Trinuclear complexes Crystal structure EPR and TGA studies

ABSTRACT

A novel macrocyclic oxamidato-bridged vanadium (IV)-oxo mononuclear ligand VOL (VOL = vanadium (IV)-oxo $H_2L = 2,3$ -dioxo-5,6:13,14-dibenzo-7,10,12-trimethyl-1,4,8,11-tetraazacyclo-tetradeca-7,12-diene) (1) has been synthesized by solvent-thermal in situ reaction and characterized by electron paramagnanetic resonance (EPR). Subsequently, using VOL as a precursor, its derivative trinuclear complexes $[(VOL)_2Cu(CH_3OH)_2](CIO_4)_2$ ·2CH₃OH (2) and $[(VOL)_2Zn(CH_3OH)_2](CIO_4)_2$ ·2CH₃OH (3) have been prepared and the crystal structures of the two complexes have been identified by the same method with 1. Thermal stabilities of compounds 1, 2 and 3 were studied and the results revealed that 1, 2 and 3 could be stable up to 205 °C, 234 °C and 250 °C, respectively. Moreover, the simulation of the EPR spectra of 1, 2 and 3 indicated the three oxo-vanadium samples were not oxidized and all of them remained in the active +4 oxidation state.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The significant research efforts in the design and preparation of macrocyclic heterometallic complexes are stimulated by their applications in the fields of chemistry, physics, biology, and magnetic materials [1–5]. In order to construct such polynuclear complexes rationally, one of the best strategies is the 'complex as ligand' approach, i.e., utilizing a metal complex as a ligand to coordinate with an appropriate additional metal ion [6-9]. Moreover, as one of the well-known bridges, oxamido-bridged ligands, which contain potential donor groups towards another metal ion and can act as a bidentate ligand through its two exo-cis carbonyl oxygen atoms, have gained a great deal of attentions [10–13]. As far as we are aware, many macrocyclic polynuclear complexes based on copper and nickel oxamido complex ligands [14] as well as very few examples of the cobalt oxamido complex ligands [15-17] have been reported. However, examples of vanadium templated by macrocyclic complexes, especially with oxamido-bridge, are still rare [18].

On the other hand, one of the most outstanding characteristics of the vanadium atom is the wide variety of coordination polyhedra due to the high nuclear charge (5+, 4+, and 3+): tetrahedral (V^{5+}) , square pyramids and distorted octahedra (V⁵⁺, V⁴⁺), trigonal bipyramid (V^{4+}) , and regular octahedra (V^{3+}) [19]. Owing to the character of the vanadium atom above, some inorganic-organic hybrid vanadium phosphates and selenates systems with zero-dimensional, 1D chain, 2D layer and 3D network structures have been prepared successfully in recent years [27-31], as well as some vanadium oxides templated by organic amines and other bridging ligands [32]. In addition, as for tetravalent vanadyl species (V⁴⁺), EPR spectroscopy is a powerful characterization method and a great deal of EPR studies have addressed the presence and coordination geometry of the paramagnetic V⁴⁺ ions on vanadium oxide nanotubes in recent years [33-35]. Taking all the above facts into account and in continuation of our interest in macrocyclic polynuclear complexes, we introduce vanadium into this system and report here a new mononuclear precursor VOL (VO = vanadium (IV)-oxo and H₂L = 2,3-dioxo-5,6:13,14-dibenzo-7,10,12-trimethyl-1,4,8,11-tetraazacyclo-tetradeca-7,12-diene) and two novel trinuclear complexes [(VOL)₂ $Cu(CH_{3}OH)_{2}[(ClO_{4})_{2}\cdot 2CH_{3}OH (2) \text{ and } [(VOL)_{2}Zn(CH_{3}OH)_{2}](ClO_{4})_{2}\cdot 2CH_{3}OH (2) \text{ and } [(VOL)_{2}Zn(CH_{3}OH)_{2}\cdot 2CH_{3}OH (2) \text{ and } [(VOL)_{2}Zn(CH_{3}OH)_{2}\cap 2CH_{3}OH (2) \text{$

^{*} Corresponding author. Tel.: +86 22 23501230. E-mail address: yanggm@nankai.edu.cn (G.-M. Yang).

^{0022-2860/\$ -} see front matter © 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.molstruc.2012.11.003

Scheme 1. Formation of oxamido-bridged copper (II) and zinc (II) complexes.

2CH₃OH **(3)** derived from the new VOL precursor (Scheme 1). The obtained compounds were characterized by single-crystal X-ray diffraction, IR spectra, elemental analyses and electron paramagnanetic resonance (EPR). Furthermore, their thermal stabilities were also investigated.

2. Experimental

2.1. General materials and physical measurements

All chemicals and solvents were commercially available reagents of analytical grade and used as received without further purification. The ligand H₂L (H₂L = 2,3-dioxo-5,6:13,14-dibenzo-7,10,12-trimethyl-1,4,8,11-tetraazacyclo-tetradeca-7,12-diene) were prepared as described previously in the literature [20]. Elemental analyses for C, H, and N were carried out on a Perkin–Elmer 240 analyzer. Sample powders dispersed on KBr disks were run on the FT-IR spectrometer in the 4000–400 cm⁻¹ range. X-band EPR spectra of a crystalline sample were recorded on a Bruker EMX-6/1 D-SPC spectrometer at room temperature. Thermogravimetric analyses (TGA) were carried out on a Rigaku standard TG–DTA analyzer with a heating rate of 10 °C min⁻¹ from ambient temperature to 800 °C.

2.2. Synthesis

2.2.1. VOL precursor (1)

In order to prevent the oxidation of V(IV) to V(V), solvent-thermal synthesis route was adopted for the precursor mononuclear complex

Table 1Crystal data and structure refinements for complexes 1–3.

1, which is different from the traditional templated solvent routes for other CuL and NiL complexes [21]. A mixture of VOSO₄·H₂O (0.178 g, 1 mmol), H₂L (0.326 g, 1 mmol), ethylenediamine (1.2 mL, 2 mmol) and methanol (15 mL) was sealed in a 18 ml Teflon-lined reactor at 120 °C under autogenous pressure for 72 h. After slowly cooling to room temperature, good-quality dark red crystals were obtained in a yield of 60.9%, washed with distilled water, methanol and dried in air. Elemental Anal. Calc. for C₂₀H₁₈N₄O₃V: C, 58.11; H, 4.36; N, 13.56%. Found: C, 57.96; H, 4.31; N, 13.49%.

2.2.2. [(VOL)₂Cu(CH₃OH)₂](ClO₄)₂·2CH₃OH (**2**)

To a methanol (20 mL) solution of VOL (0.2 mmol, 0.083 g) was added a solution of Cu(ClO₄)₂·6H₂O (0.1 mmol, 0.036 g) in methanol (10 mL), followed by the addition of DMSO (dimethyl sulfoxide) solution (2 ml). The mixture was stirred under reflux for 6 h, the resulting red solution was cooled and filtered. Red single crystals suitable for X-ray analysis were collected with a yield of 75% by slow evaporation of the filtrate in the open air at room temperature three weeks later. Elemental Anal. Calc. for $C_{44}H_{52}Cl_2CuN_8$. $O_{18}V_2$: C, 43.51; H, 4.36; N, 9.35%. Found: C, 43.42; H, 4.27; N, 9.26%.

2.2.3. [(VOL)₂Zn(CH₃OH)₂](ClO₄)₂·2CH₃OH (3)

The synthesis method of **3** was similar with **2**, Cu(ClO₄)₂·6H₂O was substituted by Zn(ClO₄)₂·6H₂O (0.1 mmol, 0.037 g) and the same VOL yielded the complex **3** (70%). Elemental Anal. Calc. for C₄₄H₅₂Cl₂ZnN₈O₁₈V₂: C, 43.49; H, 4.34; N, 9.21%. Found: C, 43.56; H, 4.29; N, 9.24%.

2.3. X-ray crystallography

Diffraction intensity data for single crystals of complexes **1–3** were mounted on room temperature on a Bruker Smart 1000 CCD area detector equipped with a graphitem monochromated Mo K α radiation ($\lambda = 0.71073$ Å). Empirical absorption corrections were applied using the SADABS program. The structures were solved by direct method SHELXS-97 and refined by the full-matrix least-squares method on F^2 with anisotropic thermal parameters for all non-hydrogen atoms [25,26]. Crystal data and details of structural determination refinement are summarized in Table 1.

•	<u>.</u>		
Complex	1	2	3
Formula	C ₂₀ H ₁₈ N ₄ O ₃ V	C44H52Cl2CuN8O18V2	C44H50Cl2N8O18V2Zn
Formula weight	413.32	1217.26	1217.09
Space group	P2(1)/n	P2(1)/c	P2(1)/c
Crystal system	Monoclinic	Monoclinic	Monoclinic
a (Å)	9.2072(17)	10.478(2)	10.454(2)
h (Å)	19.091(3)	15.658(3)	15.830(3)
$C(\hat{\mathbf{A}})$	10.5796(19	15.269(3)	15.524(3)
α (°)	90	90	90
β (°)	109.636(3)	90.26	91.09
γ(°)	90	90	90
V (Å ³)	1751.5(5)	2505.0(9)	2568.6(9)
Ζ	4	2	2
T (K)	294(2)	113(2)	293(2)
D_{calc} (g/cm ³)	1.567	1.614	1.574
Crystal size (mm)	$0.22\times0.20\times0.16$	$0.20\times0.18\times0.16$	$0.20\times0.20\times0.20$
Completeness to θ = 25.02°	99.9%	99.8%	98.4
μ (Mo K $lpha$) (mm $^{-1}$)	0.598	0.975	1.004
Goodness-F ²	1.015	1.149	1.087
$R_1, wR_2 [I > 2\sigma(I)]$	0.0371, 0.0885	0.0631, 0.1618	0.0792, 0.1479
R_1 , wR_2 (all data)	0.0644, 0.1019	0.0873, 0.1736	0.1307, 0.1682

Download English Version:

https://daneshyari.com/en/article/1406155

Download Persian Version:

https://daneshyari.com/article/1406155

Daneshyari.com