

Contents lists available at ScienceDirect

Journal of Molecular Structure

journal homepage: www.elsevier.com/locate/molstruc

The double role played by the Gd₂O₃ in the gadolinium-aluminum-boratebismuthate quaternary glass forming tendency. GdBO₃ crystalline phase

S. Rada ^{a,*}, M. Culea ^b, M. Rada ^a, P. Pascuta ^a, V. Maties ^a, E. Culea ^a

ARTICLE INFO

Article history: Received 28 May 2009 Received in revised form 24 July 2009 Accepted 17 August 2009 Available online 21 August 2009

Keywords: Gadolinium-alumino-borate-bismuthate glasses FTIR spectroscopy DFT calculations

ABSTRACT

Glasses and glass–ceramics in the xGd₂O₃·(100 – x)[2Bi₂O₃·B₂O₃·Al₂O₃] system with x = 0, 1, 5, 10, 15, 20, 25, 30, 35, 50 mol% Gd₂O₃ have been prepared by the melt quenching method. The changes of the IR spectral features suggest that the formation of [BO₄] tetrahedra is reduced because the modified [BO₃] units containing one or more B-O-Gd bonds are unable to accept the fourth oxygen.

Based on our results, we conclude that the accommodation of the networks with the excess of oxygen is possible by the deformation of Bi-O-Bi linkages, the participation of aluminum atoms as network formers and the intercalation of [BiO₆] and [AlO₄] entities in the [BO₄] chain network.

When high Gd₂O₃ content is introduced, more [BO₃] structural units are coupled with gadolinium ions and the accumulation of oxygen can be supported by the formation of new $[BO_3]^{-3}$ structural units as ortho-borate units. These yield the formation of GdBO3 crystalline phase which has been confirmed by XRD investigations.

Comparing the theoretical and experimental IR spectral characteristic features, we conclude that the prediction of the structural data is good.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Despite the fact that Bi₂O₃ is not a classical glass former, due to its high polarizability and to the small field strength of Bi⁺³ ions, in the presence of conventional glass formers (such as B₂O₃) it may build a glass network of $[BiO_n]$ pyramids [1-5]. Some authors [6,7] suggested that the bismuth ions form [BiO₃], [BiO₅] and $[BiO_6]$ units in the glasses similar to those in α -Bi₂O₃ crystal. The problem is complex because the [BiO_n] polyhedra are highly distorted due to lone pair electrons.

Glasses in the Gd₂O₃-Bi₂O₃-B₂O₃-Al₂O₃ quaternary systems are interesting subjects for structural investigations from two motives:

- (i) The addition of network modifier oxides generate the appearance of the broken network bridges accompanied by the formation of non-bridging oxygen sites.
- (ii) In the case of the structure of quaternary glasses there is no clear picture concerning the exact nature of the oxygen polyhedra surrounding the metallic atoms or of the role played by the other glass components or of their unusual glass forming tendency. The shortage of oxygens becomes more serious in quaternary glasses and it is expected that a frac-

E-mail addresses: Simona.Rada@phys.utcluj.ro, radasimona@yahoo.com (S. Rada).

tion of the oxygens to be three-coordinated. Then, the presence of [AlO₄] can indicate that Al₂O₃ behaved as a glass former in this system.

In brief, the structure of the $2Bi_2O_3 \cdot B_2O_3 \cdot Al_2O_3$ ternary glass is still a subject of discussion. The aim of the present study was to determine, by means of FTIR spectroscopic results and density functional theory (DFT) calculations, the influence of Gd₂O₃ on the structure of the aluminum-borate-bismuthate glasses with a special interest on the ability of gadolinium ions to produce the crystallization. The presence of three glass forming oxides, the classical B₂O₃ and the unconventional Bi₂O₃ and Al₂O₃, increase the interest of the present study.

2. Experiment

The quaternary glasses with the $xGd_2O_3\cdot(100-x)[2Bi_2O_3\cdot$ B₂O₃·Al₂O₃] composition were prepared by mixing appropriate amounts of Bi₂O₃, H₃BO₃, Al₂O₃, Gd₂O₃. The mixtures were melted at 1200 °C for about 15 min in corundum crucibles in an electric furnace. After that the melts were rapidly quenched at room temperature.

The samples were analyzed by means of X-ray diffraction using a XRD-6000 Shimadzu diffractometer, with a monochromator of graphite for the Cu-K α radiation (λ = 1.54 Å), at room temperature.

^a Department of Physics, Technical University of Cluj-Napoca, 400641 Cluj-Napoca, Romania

^b Faculty of Physics, Babes-Bolyai University of Cluj-Napoca, 400084 Cluj-Napoca, Romania

The FTIR spectra were recorded in the 400–1600 cm⁻¹ range using a JASCO FTIR 6200 FT-IR spectrometer.

The DFT (density functional theory) computations were performed with B3PW91/CEP-4G/ECP method using Gaussian 03 program package [8].

3. Results and discussion

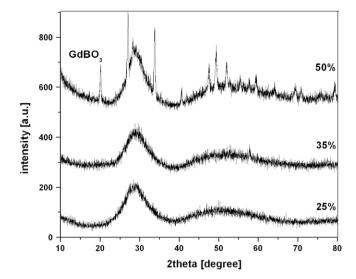
The X-ray diffraction patterns reveal the GdBO₃ crystalline phase (Table 1) in the sample with 50 mol% Gd₂O₃ (Fig. 1).

3.1. FTIR spectroscopy

In the FTIR spectra of the $xGd_2O_3\cdot(100-x)[2Bi_2O_3\cdot B_2O_3\cdot Al_2O_3]$ glasses, the main absorption bands in the $1200-1500~cm^{-1}$ range are due to B–O symmetric stretching of [BO₃] groups. The strongest absorption bands that lie in the $900-1100~cm^{-1}$ range are assigned to B–O stretching of [BO₄] units. The absorption bands in the $600-800~cm^{-1}$ regions are due to the bond-bending motion of B–O–B units [9–11], Table 2. This assignment of the IR bands agree with those reported in previous IR studies on alkali borate [12,13] and lead alumino-borate glasses [14,15].

Moreover, according to the authors [16,17], the intense absorption bands around 660 and $810\,\mathrm{cm^{-1}}$ may be assigned to the stretching vibrations of the Al–O in [AlO₄] units. The band centered at about $450\,\mathrm{cm^{-1}}$ is attributed to the bending vibrations of the Al–O–Al bonds.

The existence of the absorption bands in the 820-850 and $860-890~cm^{-1}$ spectral regions shows the presence of the $[BiO_3]$ pyramidal and $[BiO_6]$ octahedral units [18-20]. Thus, the band at $495~cm^{-1}$ was assigned to the Bi–O bending vibration in BiO_6 units [21-24].


The examination of the FTIR spectra of the xGd_2O_3 ·(100 - x) [$2Bi_2O_3$ · B_2O_3 · Al_2O_3] glasses with x = 0-50 mol% (Figs. 2 and 3) shows that the increase of the Gd_2O_3 content strongly modify the characteristic IR bands as follows:

(i) The band located at about $\sim\!495~{\rm cm}^{-1}$ attains two maximum values for 10 and 20 mol%, while decreases with the further increasing the concentration of gadolinium ions and shifts to $\sim\!468~{\rm cm}^{-1}$. The IR analysis of the Bi₂O₃ shows a frequency region extended from $400-606~{\rm cm}^{-1}$, which is assigned to the Bi-O in [BiO₆] octahedral structural units [18]. This can be due to the replacement of the [BiO₆] units by the [BiO₃] units.

The shoulder at $602\,\mathrm{cm}^{-1}$ can be attributed to Bi-O⁻ stretching vibrations in distorted linked [BiO₆] units modi-

Table 1The indexing data of the GdBO₃ crystals at room temperature.

2 theta	Int-f	h	k	1
19.952	50	0	0	2
26.853	100	1	0	0
28.704	10	1	0	1
33.693	100	1	0	2
40.639	14	0	0	4
41.025	6	1	0	3
47.476	40	1	1	0
49.310	50	1	0	4
51.954	25	1	1	2
55.415	14	2	0	0
59.481	20	2	0	2
64.185	10	1	1	4
69.410	16	1	0	6
70.848	16	2	0	4
75.939	12	2	1	0
79.310	16	2	1	2

Fig. 1. X-ray diffraction patterns for the $xGd_2O_3\cdot(100-x)[2Bi_2O_3\cdot Al_2O_3]$ glass samples with x = 25%, 35%, 50% Gd_2O_3 .

fied in the presence of gadolinium oxide. It attains maximum values at x = 10, 20 and 50 mol% Gd_2O_3 .

(ii) The intensity of the shoulder near \sim 660 cm⁻¹ modifies with increasing the Gd₂O₃ content as follows: for x=10 and 20 mol% attains maximum values, while for 5 < x < 10, $10 < x \le 15$ and $x \ge 25$ decreases. These IR data show that by increasing the Gd₂O₃ content up to 5% causes a higher extent of vitreous network polymerization and the presence of [AlO₄] structural units shows the glass former character of the Al₂O₃. After that, the significantly different shape of the IR spectrum for x=50% Gd₂O₃ compared to that for x=35% reveals a drastic structural change occurring between these compositions due to the apparition of the GdBO₃ crystalline phase, in agreement to the X-ray data.

Table 2 Infrared absorption bands and their assignment.

Peak position (cm ⁻¹)		Assignment	
[BO ₄] units	550-630	Bending vibrations of the BO ₃ ³⁻ isolated borate units	
	690-720	Oxygen bridges between two trigonal atoms	
	720–780	Oxygen bridges between one tetrahedral and one trigonal boron atom	
	900–1100	Di-, Tri-, tetra- and penta-borate groups	
[BO ₃] units	1190-	Boroxol rings and	
	1240	ortho-borate groups	
	1240- 1350	Boroxol rings	
	1350-	B-O vibration of	
	1400	various borate rings	
	1420-	Penta-, meta- and	
	1550	pyro-borate units	
[BiO ₃] and [BiO ₆]	450-495	Bi-O bonds in	
units	530	[BiO ₆] structural units	
	820-850	Bi-O symmetric stretch in [BiO ₃] units	
	860-890	Bi-O bonds in [BiO ₆] units	
[AlO ₄] units	450	The bending vibrations	
		of the Al-O-Al bonds	
	660	The stretching vibrations	
	810	of the Al–O bonds in [AlO ₄] units	

Download English Version:

https://daneshyari.com/en/article/1406408

Download Persian Version:

https://daneshyari.com/article/1406408

<u>Daneshyari.com</u>