

Available online at www.sciencedirect.com

Journal of MOLECULAR STRUCTURE

Journal of Molecular Structure 885 (2008) 23-27

www.elsevier.com/locate/molstruc

Unprecedented ferromagnetic interaction in an erbium(III)-copper(II) coordination polymer

You-Gui Huang, Min-Yan Wu, Wei Wei, Qiang Gao, Da-Qiang Yuan, Fei-Long Jiang *, Mao-Chun Hong

State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China

Received 12 June 2007; received in revised form 26 September 2007; accepted 4 October 2007 Available online 12 October 2007

Abstract

Two 3D Ln(III)–Cu(II) coordination polymers $[Er_2Cu_3(pydc)_6(H_2O)_6]_n$ (1) and $[Tb_2Cu_3(pydc)_6(H_2O)_6]_n$ (2) were hydrothermally prepared from pyridine-2,4-dicarboxylic acid (H₂pydc) and characterized by single-crystal X-ray diffraction analysis. The magnetic studies show that an unexpected ferromagnetic interaction between metal centers exists in 1 while 2 behaves as an antiferromagnet. © 2007 Elsevier B.V. All rights reserved.

Keywords: Heterometallic; Coordination polymer; Ferromagnetic interaction

1. Introduction

The 3d–4f heterometallic coordination polymers have been intensively investigated because of their interesting magnetic and luminescent properties [1-4]. Among these 3d-4f complexes, particular attention has been paid to gadolinium(III)/copper(II) couples which display magnetic properties amenable to a rather simple analysis based on a spin-only Hamiltonian because the ${}^{8}S_{7/2}$ single-ion ground state of gadolinium(III) has no first-order orbital momentum to complicate the magnetic analysis. Ferromagnetic interaction has been observed in a number of gadolinium(III)-copper(II) complexes [5-7]. However, little attention has been paid to the fact that almost all the erbium(III)-copper(II) complexes reported by now are antiferromagnets [8-11]. To the best of our knowledge, only one erbium(III)-copper(II) compound reported recently by Navarro et al. is ferromagnet [12]. It should be mentioned that the number of erbium(III)-copper(II) compounds for which structural and magnetic data are

E-mail address: fjiang@fjirsm.ac.cn (F.-L. Jiang).

0022-2860/\$ - see front matter @ 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.molstruc.2007.10.002

available is restricted and that the factors governing the nature and magnitude have not been clarified. Here, we report two Ln(III)–Cu(II) coordination polymers formulated as $[Er_2Cu_3(pydc)_6(H_2O)_6]_n$ (1) and $[Tb_2Cu_3(pydc)_6(H_2O)_6]_n$ (2), compound 1 displays an unprecedented ferromagnetic behavior while 2 behaves as an antiferromagnet.

2. Experimental

2.1. General

All chemicals are analytical grade and were used without further purification. The hydrothermal reaction was performed in a 23 mL Teflon-lined stainless steel autoclave under autogenous pressure. Infrared spectra were recorded on a Magna 750 FR-IR spectrometer using KBr pellets. C, H and N microanalyses were measured with an elemental Vairo EL III analyzer. Thermal analyses were performed using a thermal analyst 2100TA Instrument and a SDT 2960 Simultaneous TGA-DTA Instrument. The polycrystalline magnetic susceptibility data were collected on a Quantum Design PPMS model 6000 magnetometer in the temperature range from 2 to 300 K.

^{*} Corresponding author. Tel.: +86 591 83714605; fax: +86 591 83714946.

2.2. Synthesis of the complexes

Both 1 and 2 were prepared by the same method, as follows: a mixture of $Ln(NO_3)_3$ · GH_2O (0.1 mmol), $Cu(NO_3)_2$ · $3H_2O$ (0.029 g, 0.15 mmol), H_2 pydc (0.048 g, 0.3 mmol) in H_2O (5 mL) was sealed in a 23 mL Teflonlined bomb at 160 °C for 6 days, then slowly cooled to room temperature by 5 °C/h. Blue prismatic crystals were recovered by filtration, washed by distilled water, and airdried (Yield: 83%, and 87%, based on $Ln(NO_3)_3$ for 1 and 2, respectively). The positions of the diffraction peaks of the experimental and simulated XRD patterns correspond well, thus indicating phase purity of the as-synthesized samples (Figure S1). Elemental analysis and IR data for compounds 1 and 2 are listed in Table 4.

2.3. X-ray crystallography

Data collections were performed at 293(2) K on a Mercury CCD diffractometer with graphite monochromated Mo-K α radiation ($\lambda = 0.71073$ Å). The structures were solved by direct methods and all calculations were performed using the SHELXL package [13]. The structure were refined by full matrix least squares with anisotropic displacement parameters for non-hydrogen atoms. All hydrogen atoms belonging to the water molecules were found in the electron density map and refined isotropically, the other H atoms were generated geometrically and

I able I	Та	ble	1
----------	----	-----	---

Compound	1	2
Formula	C42H30Cu3Er2N6O30	C42H30Cu3Tb2N6O30
$F_{\rm w}$	1623.86	1607.18
Crystal size (mm)	$0.30 \times 0.15 \times 0.05$	$0.18 \times 0.12 \times 0.02$
Space group	P-1	P-1
a (Å)	9.4098 (5)	9.4316 (5)
b (Å)	10.6220 (7)	10.6777 (8)
c (Å)	12.2324 (7)	12.2767 (6)
α (°)	86.095 (9)	86.101 (9)
β (°)	81.384 (7)	81.449 (6)
γ (°)	86.665 (7)	86.608 (8)
$V(\text{\AA}^3)$	1204.61 (12)	1218.28 (13)
Ζ	1	1
λ (Mo Kα) (Å)	0.71073	0.71073
$D_{\rm c} ({\rm g/cm^3})$	2.238	2.191
$\mu (\mathrm{mm}^{-1})$	4.86	4.263
$T(\mathbf{K})$	293(2)	293(2)
Reflections collected	7685	9601
Unique reflections	4220	5507
R _{int}	0.021	0.0336
Parameters	376	376
R_1 , $wR (I \ge 2\sigma(I))^a$	0.0259, 0.0632	0.0416, 0.0870
R_1 , wR (all data) ^b	0.0290, 0.0654	0.0517, 0.0948
$w = 1/[\sigma^2(F_o^2) + (aP)^2 + bP]3$	a = 0.0372,	a = 0.0391,
	b = 0.7273	b = 3.5840
Goodness-of-fit-on F_1^2	1.058	1.026
$\Delta \rho_{\min}$ and $\Delta \rho_{\max}$ (e Å ⁻³)	-1.584, 1.451	-1.235, 1.446

^a $R_1 = \sum ||F_o| - |F_c||) / \sum |F_o|.$ ^b $wR = |\sum w(F_o - F_c)^2 / \sum w(F_o^2)^2|^{1/2}.$ treated as riding. The crystallographic data are summarized in Table 1 and selected bond lengths and bond angles of 1 and 2 are listed in Tables 2 and 3.

3. Results and discussion

3.1. Crystal structures and magnetic properties

X-ray diffraction analyses reveal that **1** and **2** are isostructural with our previous report of $[Sm_2Cu_3(pyd-c)_6(H_2O)_6]_n$ [14]. Both of them contain 2D carboxylbridged layers which are further pillared together through pydc ligands to generate the final 3D structures (Fig. 1). The asymmetric unit of **1** contains one eight-coordinated Er^{III} ion and one and a half five-connected Cu^{II} ions. In the 2D carboxyl-bridged layer, each Er^{III} ion connects to

Table 2								
Selected	bond	lengths	[Å]	and	angles	[°]	for 1	

Bond			
Er1–O3 ⁱ	2.267 (3)	Cu1–O1 ^{iv}	1.966 (3)
Er1–O11	2.324 (3)	Cu1–O1	1.966 (3)
Er1–O4 ⁱⁱ	2.324 (3)	Cu1–O5 ^{iv}	2.404 (3)
Er1–O2	2.346 (3)	Cu1–O5	2.404 (3)
Er1–O13	2.381 (3)	Cu2–O6	1.936 (3)
Er1-O15	2.385 (3)	Cu2–O10 ^v	1.941 (3)
Er1–O9 ⁱⁱⁱ	2.437 (3)	Cu2–N2	1.974 (3)
Er1–O14	2.448 (3)	Cu2–N3 ^v	1.975 (3)
Cu1–N1 ^{iv}	1.964 (3)	Cu2012	2.334 (3)
Cu1-N1	1.964 (3)		
Angle			
$O3^{i}$ -Er1-O11	87.96 (10)	O9 ⁱⁱⁱ –Er1–O14	132.76 (9)
O3 ⁱ –Er1–O4 ⁱⁱ	102.36 (10)	N1 ^{iv} –Cu1–N1	180.000 (1)
O11–Er1–O4 ⁱⁱ	144.92 (10)	N1 ^{iv} –Cu1–O1 ^{iv}	83.02 (12)
O3 ⁱ –Er1–O2	143.43 (10)	N1–Cu1–O1 ^{iv}	96.98 (12)
O11–Er1–O2	108.22 (11)	N1 ^{iv} –Cu1–O1	96.98 (12)
O4 ⁱⁱ –Er1–O2	83.24 (10)	N1-Cu1-O1	83.02 (12)
O3 ⁱ –Er1–O13	145.22 (10)	O1 ^{iv} –Cu1–O1	180.0
O11-Er1-O13	77.55 (10)	N1 ^{iv} –Cu1–O5 ^{iv}	91.41 (12)
O4 ⁱⁱ –Er1–O13	75.09 (10)	N1–Cu1–O5 ^{iv}	88.59 (12)
O2-Er1-O13	71.31 (10)	O1 ^{iv} –Cu1–O5 ^{iv}	91.46 (11)
O3 ⁱ –Er1–O15	74.71 (10)	O1–Cu1–O5 ^{iv}	88.54 (11)
O11-Er1-O15	142.45 (10)	N1 ^{iv} –Cu1–O5	88.59 (12)
O4 ⁱⁱ –Er1–O15	72.32 (10)	N1-Cu1-O5	91.41 (12)
O2-Er1-O15	72.76 (10)	O1 ^{iv} –Cu1–O5	88.54 (11)
O13-Er1-O15	133.54 (10)	O1-Cu1-O5	91.46 (11)
O3 ⁱ –Er1–O9 ⁱⁱⁱ	77.30 (10)	O5 ^{iv} –Cu1–O5	180.0
O11–Er1–O9 ⁱⁱⁱ	68.25 (10)	O6-Cu2-O10 ^v	172.22 (13)
O4 ⁱⁱ –Er1–O9 ⁱⁱⁱ	146.53 (10)	O6-Cu2-N2	84.57 (13)
O2–Er1–O9 ⁱⁱⁱ	78.79 (10)	O10 ^v -Cu2-N2	96.28 (13)
O13–Er1–O9 ⁱⁱⁱ	123.92 (10)	O6-Cu2-N3 ^v	94.83 (13)
O15–Er1–O9 ⁱⁱⁱ	75.46 (10)	O10v-Cu2-N3v	83.26 (12)
O3 ⁱ -Er1-O14	71.50 (10)	N2-Cu2-N3 ^v	172.06 (15)
O11-Er1-O14	75.96 (10)	O6-Cu2-O12	96.66 (13)
O4 ⁱⁱ –Er1–O14	75.84 (10)	O10 ^v -Cu2-O12	91.03 (12)
O2-Er1-O14	143.33 (10)	N2-Cu2-O12	92.98 (13)
O13-Er1-O14	74.35 (10)	N3 ^v -Cu2-O12	94.95 (12)
O15-Er1-O14	126.45 (10)	O9 ⁱⁱⁱ –Er1–O14	132.76 (9)
O3 ⁱ -Er1-O11	87.96 (10)	N1 ^{iv} –Cu1–N1	180.000 (1)
O3 ⁱ -Er1-O4 ⁱⁱ	102.36 (10)		

Symmetry codes: (i) x, 1 + y, z; (ii) 1 - x, -y, -z; (iii) 1 - x, 1 - y, 1 - z; (iv) 1 - x, -y, 1 - z; (v) 2 - x, 1 - y, 1 - z.

Download English Version:

https://daneshyari.com/en/article/1407246

Download Persian Version:

https://daneshyari.com/article/1407246

Daneshyari.com