

Available online at www.sciencedirect.com

Journal of MOLECULAR STRUCTURE

Journal of Molecular Structure 830 (2007) 94-99

www.elsevier.com/locate/molstruc

DFT B3-LYP/3-21G geometry optimisation and effective charge values calculations for azodiazaphenanthrenes and acylaminodiazaphenanthrenes

L. Chrząstek, J. Peszke, W. Śliwa *

Institute of Chemistry and Environmental Protection, Jan Dhugosz University of Częstochowa, Armii Krajowej Ave. 13/15, 42-201 Częstochowa, Poland

Received 11 October 2005; received in revised form 7 May 2006; accepted 29 June 2006 Available online 14 August 2006

Abstract

For four azodiazaphenanthrenes 1–4 and three acylaminodiazaphenanthrenes 5–7 the geometry was optimised and their effective charge and dipole moment values were calculated using DFT B3-LYP/3-21G method. For 5–7 the results have been compared with those obtained by AM1 method. The UV experimental values of 1–4 are presented. With the use of DFT B3-LYP/6-31G** optimised geometry the simulation of UV spectra of 5–7 by AM1 and ZINDO/S methods was made and correlations with experimental UV values have been performed.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Calculations; Effective charge; Geometry optimisation; Wavenumber

1. Introduction

In a continuation of our study concerning calculations and spectral properties of diazaphenanthrene derivatives, such as amino- [1], formyl- [2] and methyldiazaphenanthrenes [3], as well as their quaternary salts with haloalkanes [4], the present paper deals with four azodiazaphenanthrenes 1–4 and three acylaminodiazaphenanthrenes 5–7 derived from parent 1,5- and 4,6-diazaphenanthrenes (DAP) 8 and 9.

DAPs and their derivatives are a topic of our research. DAPs are interesting for their reactivity [5,6]; due to the presence of nitrogen atoms they may be oxidized and quaternized. DAP *N*-oxides and quaternary salts undergo a variety of reactions, for example *N*-oxides form ylides [7]; quaternary salts afford tetracyclic products [8] or alkylbenzonaphthyridones [9]. Various quaternary salts of DAPs have been obtained [10–12], some of them are

* Corresponding author. *E-mail address:* w.sliwa@ajd.czest.pl (W. Śliwa). precursors of 1,3-dipoles in cycloaddition reactions [13]. AminoDAPs upon diazotization and coupling reactions afford azoDAPs [14], they also in the Skraup procedure yield pyridoDAPs [15], and with aldehydes the tetracyclic products [16,17]. DAPs form complexes with metal ions [18] and are interesting for their antibacterial [19] and enzyme enhancing [20] activities.

In the present work the geometry of 1–7 has been optimised and their effective charge values and dipole moments calculated using DFT B3-LYP/3-21G method.

For 5–7 the geometry, effective charge values and dipole moments calculated by DFT B3-LYP/3-21G method (next referred to as DFT) have been compared with those calculated by AM1 method [1]. The UV spectral data for 1–4 are presented and differences of their experimental wavenumber values as compared with those of parent daps 8 and 9 are given.

Using DFT B3-LYP/6-31G^{**} optimised geometry the UV spectra of 5–7 have been calculated by semiempirical AM1 and ZINDO/S methods and correlations with experimental UV data have been made.

^{0022-2860/\$ -} see front matter @ 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.molstruc.2006.06.035

Table 1 Bond lengths and angles for 1–7 calculated by DFT B3-LYP/3-21G method

	1		2		3		4		5		6		7
Bond length (Å)													
N1–C2	1.336	N1–C2	1.334	C1–C2	1.382	C1–C2	1.382	N1–C2	1.336	N1–C2	1.334	C1–C2	1.382
C2–C3	1.408	C2-C3	1.406	C2–C3	1.410	C2–C3	1.410	C2–C3	1.404	C2–C3	1.407	C2–C3	1.411
C3-C4	1.384	C3-C4	1.382	C3-N4	1.333	C3-N4	1.333	C3–C4	1.383	C3–C4	1.381	C3-N4	1.333
C4–C4a	1.408	C4–C4a	1.423	C4–C4a	1.364	C4–C4a	1.364	C4–C4a	1.407	C4–C4a	1.409	C4–C4a	1.363
C4a–C10b	1.420	C4a-C10b	1.423	C4a-C10b	1.419	C4a-C10b	1.418	C4a-C10b	1.423	C4a-C10b	1.423	C4a-C10b	1.418
C10b-N1	1 358	C10b-N1	1 359	C10b-C1	1 414	C10b-C1	1 419	C10b-N1	1 365	C10b-N1	1 360	C10b-C1	1 415
C4a-N5	1 392	C4a-N5	1 359	C4a-C5	1 436	C4a-C5	1 436	C4a-N5	1 389	C4a-N5	1 391	C4a-C5	1 436
N5-C6	1 309	N5-C6	1 307	C5-N6	1 306	C5-N6	1 306	N5-C6	1 307	N5-C6	1 306	C5-N6	1 308
C6-C6a	1 442	C6-C6a	1 440	N6-C6a	1 386	N6–C6a	1 386	C6–C6a	1 440	C6-C6a	1 440	N6-C6a	1 390
C6a-C10a	1 422	C6a_C10a	1 427	C_{6a} - C_{10a}	1 428	C_{6a} - C_{10a}	1 428	C6a-C10a	1 425	C6a-C10a	1 427	C_{6a} - C_{10a}	1 426
C10a-C10b	1 441	C10a-C10b	1 453	C10a-C10b	1 454	C10a-C10b	1 454	C10a-C10b	1 453	C10a-C10b	1 456	C10a-C10b	1 453
C6a_C7	1 409	C6a-C7	1 408	C_{6a} - C_{7}	1 429	C6a-C7	1 428	C_{6a} - C_{7}	1 407	C_{6a} - C_{7}	1 409	C_{6a} - C_{7}	1 453
C7_C8	1 385	C7-C8	1 384	C7-C8	1 392	C7_C8	1 391	C7-C8	1 381	C7-C8	1 380	C7-C8	1 389
$C_{8}^{-}C_{9}^{-}$	1 402	C8-C9	1 396	C8-C9	1 398	C8-C9	1 399	C8-C9	1 400	C8-C9	1 402	C8-C9	1.303
C9-C10	1 307	C_{9} C_{10}	1 398	$C_{9}-C_{10}$	1 385	$C_{9}-C_{10}$	1 385	$C_{9}-C_{10}$	1.400	C9-C10	1 302	$C_{9}-C_{10}$	1 382
C_{10}	1.357	C_{10} C_{10}	1.370	C_{10} C_{10}	1.303	C_{10} C_{10}	1.505	C_{10} C_{10}	1.402	C_{10} C_{10}	1.372	C_{10} C_{10}	1.302
C10-N11	1 438	C10-N11	1 408	C7_N11	1 413	C7_N11	1.416	C10-N11	1 388	$C10_{2}$ N11	1.416	C7_N11	1.415
N11_N12	1 274	N11_N12	1 315	N11_N12	1 298	N11_N12	1 297	N11_C12	1 305	N11_C12	1 301	N11_C12	1 396
N12_C13	1 432	N12_C13	1.313	N12_C13	1.290	N12_C13	1.207	C12-013	1.375	C12-013	1.371	C12-C13	1.570
$C_{13} C_{14}$	1.405	$C_{13} C_{14}$	1.375	$C_{13} C_{14}$	1 403	C13 C14	1.400	C12-013	1.521	C12_C14	1.250	C12-C13	1.317
C13 - C14 C14 $C15$	1 38/	C13 = C14 C14 $C15$	1.421	C13 = C14 C14 $C15$	1 383	C13 = C14 C14 $C15$	1 / 1 3	012-014	1.521	C12 = C14 C14 $C15$	1.497	012-014	1.237
C14-C15	1.304	C14 - C15 C15 - C16	1.425	C15_C16	1.303	C14-C15	1 360			C15_C16	1 306		
C15-C10	1.413	C16 C162	1.303	C15-C10	1 /10	C16 C162	1.309			C16 C17	1 307		
C10-C17	1 292	C16a $C17$	1.431	C10-C17	1.419	C16a $C17$	1.420			C17_C18	1.397		
C17 - C18 C18 $C13$	1.303	C10a = C17	1 220	C17 = C13	1.300	C10a = C17	1.420			C17 = C10	1 202		
C16 N10	1.404	C17 = C18 C18 $C10$	1.300	C16_N10	1.407	C17 = C18 C18 $C10$	1.370			C10 - C19	1.392		
C10-IN19	1.3/1	C10 - C19	1.412	C10-IN19	1.309	$C_{10} = C_{19}$	1.412			C19-C14	1.400		
		$C_{19} = C_{20}$	1.362			$C_{19} = C_{20}$	1.300						
		$C_{20} = C_{20a}$	1.414			$C_{20} = C_{20a}$	1.422						
		$C_{20a} = C_{15}$	1.445			$C_{20a} = C_{10a}$	1.457						
		$C_{20a} = C_{10a}$	1.420			$C_{20a} = C_{13}$	1 272						
		021	1.554			021	1.373						
Angle (°)													
N1-C2-C3	123.097	N1-C2-C3	122.838	C1C2C3	119.213	C1C2C3	119.203	N1-C2-C3	122.764	N1-C2-C3	123.309	C1C2C3	119.283
C2-C3-C4	118.670	C2-C3-C4	118.168	C2-C3-N4	122.957	C2-C3-N4	122.971	C2-C3-C4	118.282	C2-C3-C4	118.174	C2-C3-N4	122.921
C3–C4–C4a	119.416	C3C4C4a	119.882	C3–N4–C4a	117.949	C3–N4–C4a	117.949	C3-C4-C4a	119.964	C3–C4–C4a	119.679	C3–N4–C4a	117.908
C4C4aC10b	118.150	C4-C4a-C10b	118.669	N4-C4a-C10b	123.387	N4-C4a-C10b	123.358	C4-C4a-C10b	118.742	C4-C4a-C10b	118.716	N4-C4a-C10b	123.468
C4a-C10b-N1	121.882	C4a-C10b-N1	120.182	C4a-C10b-C1	116.879	C4a-C10b-C1	116.918	C4a-C10b-N1	120.030	C4a-C10b-N1	120.608	C4a-C10b-C1	116.888
C10b-N1-C2	118.733	C10b-N1-C2	120.261	C10b-C1-C2	119.615	C10b-C1-C2	119.601	C10b-N1-C2	120.217	C10b-N1-C2	119.507	C10b-C1-C2	119.531
C4a-N5-C6	117.868	C4a–N5–C6	117.598	C4a-C5-N6	123.963	C4a-C5-N6	123.943	C4a–N5–C6	117.494	C4a–N5–C6	117.613	C4a-C5-N6	123.991
N5-C6-C6a	124.974	N5-C6-C6a	124.928	C5-N6-C6a	119.584	C5-N6-C6a	119.513	N5-C6-C6a	125.159	N5-C6-C6a	124.873	C5–N6–C6a	119.306
C6-C6a-C10a	117.947	C6-C6a-C10a	118.960	N6-C6a-C10a	122.063	N6-C6a-C10a	122.176	C6-C6a-C10a	118.906	C6-C6a-C10a	118.951	N6-C6a-C10a	122.289
C6a-C10a-C10b	117.715	C6a-C10a-C10b	116.614	C6a-C10a-C10b	117.509	C6a-C10a-C10b	117.468	C6a-C10a-C10b	116.387	C6a-C10a-C10b	116.683	C6a-C10a-C10b	117.563
C10a–C10b–C4a	118.785	C10a–C10b–C4a	118.716	C10a–C10b–C4a	118.593	C10a–C10b–C4a	118.575	C10a–C10b–C4a	119.095	C10a–C10b–C4a	118.405	C10a–C10b–C4a	118.558
C10b-C4a-N5	122.577	C10b-C4a-N5	120.927	C10b-C4a-C5	118.115	C10b-C4a-C5	118.137	C10b-C4a-N5	122.956	C10b-C4a-N5	123.384	C10b-C4a-C5	118.281
C6a-C7-C8	119.478	C6a–C7–C8	119.952	C6a-C7-C8	119.133	C6a-C7-C8	119.380	C6a-C7-C8	119.051	C6a-C7-C8	119.948	C6a-C7-C8	118.955
С7-С8-С9	120.582	C7–C8–C9	119.919	C7–C8–C9	121.340	C7–C8–C9	121.141	C7–C8–C9	120.956	C7–C8–C9	119.554	C7–C8–C9	121.289

L. Chrząstek et al. | Journal of Molecular Structure 830 (2007) 94-99

(continued on next page) 95

Download English Version:

https://daneshyari.com/en/article/1407406

Download Persian Version:

https://daneshyari.com/article/1407406

Daneshyari.com