Journal of Molecular Structure 1094 (2015) 118-129

Contents lists available at ScienceDirect

Journal of Molecular Structure

journal homepage: www.elsevier.com/locate/molstruc

Acetonitrile-water hydrogen-bonded interaction: Matrix-isolation infrared and *ab initio* computation

R. Gopi, N. Ramanathan, K. Sundararajan*

Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, India

HIGHLIGHTS

• Experimental evidence for the formation of linear 1:1 CH₃CN-H₂O.

• Computation showed two minima a linear and cyclic complex.

• Computations were also carried out for 1:2 and 2:1 complexes of CH₃CN and H₂O.

• AIM and NBO analyses were carried out for the complexes A and B.

ARTICLE INFO

Article history: Received 28 January 2015 Received in revised form 2 March 2015 Accepted 24 March 2015 Available online 8 April 2015

Keywords: Ab initio co

Ab initio computation Hydrogen-bonded Matrix-isolation Acetonitrile Water

ABSTRACT

The 1:1 hydrogen-bonded complex of acetonitrile (CH₃CN) and water (H₂O) was trapped in Ar and N₂ matrices and studied using infrared technique. *Ab initio* computations showed two types of complexes formed between CH₃CN and H₂O, a linear complex A with a C=N···H interaction between nitrogen of CH₃CN and hydrogen of H₂O and a cyclic complex B, in which the interactions are between the hydrogen of CH₃CN with oxygen of H₂O and hydrogen of H₂O with π cloud of -C=N of CH₃CN. Vibrational wavenumber calculations revealed that both the complexes A and B were minima on the potential energy surface. Interaction energies computed at B3LYP/6-311++G(d,p) showed that linear complex A is more stable than cyclic complex B. Computations identified a blue shift of ~11.5 cm⁻¹ and a red shift of ~6.5 cm⁻¹ in the CN stretching mode for the complexes A and B, respectively. Experimentally, we observed a blue shift of ~15.0 and ~8.3 cm⁻¹ in N₂ and Ar matrices, respectively, in the CN stretching mode of CH₃CN, which supports the formation of complex A. The Onsager Self Consistent Reaction Field (SCRF) model was used to explain the influence of matrices on the complexes A and B. To understand the nature of the interactions, Atoms in Molecules (AIM) and Natural Bond Orbital (NBO) analyses were carried out for the complexes A and B.

© 2015 Elsevier B.V. All rights reserved.

Introduction

Acetonitrile (CH₃CN) is a simple organic nitrile detected in the gas phase in interstellar clouds [1]. CH₃CN has a unique property such as high relative permittivity (ε_r = 37.5) and hence possess remarkable miscibility with range of ionic and polar solvents [2], which makes CH₃CN as a solvent of choice for variety of organic synthesis. CH₃CN is also used as a mobile phase in HPLC and LC–MS. CH₃CN has been extensively used in synthetic organic chemistry.

Freedman and Nixon investigated the infrared spectra of CH₃CN in solid argon matrix [3]. Later, Kim and Kim re-investigated the vibrational spectra of CH₃CN using Fourier transform infrared

spectra and made precise assignments of monomers, dimers and higher mulitmers of CH_3CN [4]. Givan and Loewenschuss studied the Raman spectrum of CH_3CN using matrix isolation spectroscopy [5]. Several groups have studied the H-bonded interaction of CH_3CN with a variety of electron acceptors [6–20].

Recently, we have reported the hydrogen-bonded interaction of CH₃CN with C_2H_2 in an Ar and N_2 matrices and found evidences for the formation of 1:1, 1:2 and 2:1 C_2H_2 —CH₃CN complexes [21].

Interaction of CH₃CN with H₂O was studied extensively by many theoretical groups. Doo-sik Ahm and Sungyul Lee computationally studied the σ - and π -type hydrogen-bonded complexes of acetonitrile–water clusters. They found at MP2/6-31+G(d,p) level of theory the π -type complex to be slightly lower in ZPE corrected energy by 0.11 kcal/mol, while the σ -type complex is lower in energy by 0.09 kcal/mol at MP2/aug-cc-pVDZ level of theory [22]. Ajay chaudhari and Shyi-Long Lee using DFT/6-31+G(d) level of

^{*} Corresponding author. Tel.: +91 44 27480098; fax: +91 44 27480065. *E-mail address:* sundar@igcar.gov.in (K. Sundararajan).

theory studied the interaction of CH_3CN with one, two, and three water molecules. For the 1:1 CH_3CN — H_2O complex, it was found that the cyclic structure is less stable than open structure [23].

Canuto et al. performed *ab initio* computations on the $CH_3CN\cdots H_2O$ complex to obtain the structure, vibrational frequencies, Rayleigh and Raman activities including light scattering depolarization and binding energies. All the theoretical models showed shortening of the CN distance, leading to a blue shift of around ~15 cm⁻¹ in the CN stretching mode. In the Raman spectrum, the depolarization due to the intense CN stretching vibration was increased by 20% after the hydrogen bond formation. Further, there was a large red shift of 75 cm⁻¹ in the OH mode of water, which leads to intensification of the Raman scattering activity [24].

Bako et al. [25] investigated the structure of CH_3CN-H_2O mixture using *ab initio* computations, molecular dynamics and X-ray diffraction techniques. Computations showed two types of complexes; (a) H-bonded complex between the nitrogen of CH_3CN and hydrogen of H_2O and (b) CH_3CN and H_2O molecules are in side-by-side anti dipole arrangement. Both the complexes were minima on the potential energy surface, which have nearly the same interaction energy. They also confirmed the formation of microheterogeneity in the CH_3CN-H_2O system.

Tabata et al. [26] studied the liquid structure of CH₃CN—H₂O using X-ray diffraction and Infrared technique. They observed due

to the dipole–dipole interaction between water and CH_3CN-H_2O , CH_3CN completely miscible with water at all concentration ratios. Furthermore, they found that CH_3CN-H_2O and water clusters coexist, as microheterogeneity occurs in CH_3CN-H_2O mixtures.

Chaban studied the interaction of three nitrile molecules, cynamide $(H_2N-C\equiv N)$, CH_3CN and aminoacetonitrile $(H_2N-CH_2-C\equiv N)$ with water molecules using second order Moller–Plesset perturbation theory with triple- ξ basis sets. For the CH_3CN-H_2O system, *ab initio* computations identified two equilibrium geometries. The lowest energy complex was the one where the hydrogen of water molecule is bound to the $C\equiv N$ end of the nitrile molecule through hydrogen bond and the second complex has two weak hydrogen bonds between CH_3CN and H_2O [27].

Allamandola et al. studied 16 nitriles and related compounds in Ar and H_2O matrices. The strong C=N stretching vibrations of these compounds were probed using vibrational spectroscopy in matrices. They have compared the IR spectra in the C=N stretching region of 19 nitriles in Ar and H_2O matrices. They observed two major bands for the CH₃CN molecule in the CN stretching region at 2258.3 cm⁻¹ and 2293.0 cm⁻¹ in Ar matrix. The low frequency band is assigned to the C=N stretching vibration and the high frequency band is due to the combination band produced by the strong vibrational modes at 1376 and 917 cm⁻¹. In contrast, the CH₃CN spectrum in ice matrices is broad and the frequencies were

Fig. 1. Spectra of CH₃CN—H₂O complexes in N₂ matrix in the region 3740–3540 cm⁻¹. Block A shows the as-deposited spectra and block B shows the 30 K annealed spectra. Matrix isolation infrared spectra of various concentrations of CH₃CN/H₂O/N₂; (a) 0/1/1000; (b)1/1/1000; (c) 2/1/1000.

Download English Version:

https://daneshyari.com/en/article/1408129

Download Persian Version:

https://daneshyari.com/article/1408129

Daneshyari.com