Journal of Molecular Structure 1076 (2014) 201-207

Contents lists available at ScienceDirect

Journal of Molecular Structure

journal homepage: www.elsevier.com/locate/molstruc

Structural, spectral, electrochemistry, thermal properties and theoretical studies on 4-[N, N-di(4-tolyl)amino] benzaldehyde -2-chloro benzoylhydrazone

Liu Lizeng^{a,*}, Li Wei^b, Meng Xianfang^a, Liu Dongzhi^b, Xu Gongfeng^a, Bai Zhengchen^a

^a College of Science, Tianjin University of Commerce, Tianjin 300134, China ^b School of Chemical Engineering, Tianjin University, Tianjin 300072, China

HIGHLIGHTS

- 4-[N, N-di(4-tolyl)amino] benzaldehyde-2-chloro benzoylhydrazone were synthesized and characterized.
- The photophysical, thermostability properties of the titled compound were found to be distinctively modified by benzoylhydrazone structure.
- DFT calculations and experimental results were coincided on structure, energy gap and electrochemistry.
- The hydrogen bonding interactions within sheets and π - π interactions 3D network confirmed the title compound can be used as amorphous material in nonpolar solvents.

ARTICLE INFO

Article history: Received 14 May 2014 Received in revised form 23 July 2014 Accepted 23 July 2014 Available online 30 July 2014

Keywords: Triphenylamine Crystal structure Photophysical Electrochemistry Thermal property DFT

ABSTRACT

The title compound 4-[N, N-di(4-tolyl)amino] benzaldehyde-2-chloro benzoylhydrazone (C₂₈H₂₄ClN₃O, M_r = 453.96) was synthesized by the reaction of 4-[N, N-di(4-tolyl)amino] benzaldehyde with 2-chlorobenzohydrazide, and its structure was characterized by IR, ¹H NMR, ¹³H NMR, high-resolution mass spectrometry and single-crystal X-ray diffraction. The crystal belongs to Monoclinic, space group P2(1)/n with a = 12.626(3), b = 12.609(3), c = 15.837(3)Å, $\beta = 90.00(3)^\circ$, Z = 5, V = 2512.5(9)Å³, $M_r = 453.95$, Dc = 1.280 g/cm³, $\mu = 0.183$ mm⁻¹, F(000) = 1024, R = 0.0432 and wR = 0.1087. X-ray analysis revealed that one of the benzene ring and acylhydrazone were essentially planar, the 2-chloro benzene ring and amide were non-planar, the torsion angles C(1)–C(6)–C(7)–O(1) and C(5)–C(6)–C(7)–O(1) are 61.4(5)° and -114.4(4)°. The thermal stability studies indicate that the title compound is stable up to 341.1 °C. The spectral, electrochemistry properties and theoretical studies show that the title compound is a good candidate for the charge-transporting materials.

© 2014 Elsevier B.V. All rights reserved.

Introduction

In the process of the large-scale manufacturing of the opto devices, amorphous molecular materials used as hole-transport materials must be capable of forming uniform amorphous thin films by either vacuum deposition or spin coating from solution. Triphenylamine-based hydrazones used as organic hole-transport materials have been widely studied [1–6]. Up to now, the efforts have been laid on developing solution processable organic small molecules, for that they offer the advantages of simple

(X. Gongfeng), bzhcheng@tjcu.edu.cn (B. Zhengchen).

preparation/purification procedures, lower cost and the high reproducibility in the performance of the device. The recent extensive studies have revealed that small triphenylamine-based molecules can also form stable amorphous glasses above room temperature if their molecular structures are properly designed [7–9]. The following strategies have been adopted for this purpose [1]: (1) Molecules should possess nonplanar molecular structures; (2) The incorporation of bulky and heavy substituents leads to enhanced stability of the resulting amorphous glasses; (3) The introduction of structurally rigid moieties can increase the thermal stability. In our concept, we designed the triphenylamine-based hydrazones which the enlarged system of conjugated π -electrons of the target molecular would reinforce the inclination of the molecules to form glasses and would allow enhanced charge-carrier mobilities. On the other hand, the presence of hydrazide and cholro

^{*} Corresponding author. Cell: +86 022 15620642015; fax: +86 022 83692436. E-mail addresses: llzeng@tjcu.edu.cn (L. Lizeng), jkliwei@yahoo.cn (L. Wei), mxfang@tcju.edu.cn (M. Xianfang), dzliu@tju.edu.cn (L. Dongzhi), gfxu@tjcu.edu.cn

Scheme 1. Synthesis route of the compound III.

Fig. 1. Molecular structure of the compound III.

Table 1

Selected optimized and experimental geometries parameters of the title compound in ground state.

Bond lengths (Å)	Exp./cal.	Bond lengths (Å)	Exp./cal.	Bond lengths (Å)	Exp./cal.
Cl(1)C(1) O(1)C(7) N(1)C(7) N(1)N(2) N(1)H(1) N(2)C(8) N(3)C(12) N(3)C(12) N(3)C(15)	$\begin{array}{c} 1.737(3)/1.772\\ 1.228(4)/1.220\\ 1.354(4)/1.377\\ 1.393(3)/1.361\\ 0.901(10)/1.017\\ 1.289(4)/1.287\\ 1.406(4)/1.411\\ 1.425(4)/1.425\\ 1.439(4)/1.425 \end{array}$	C(1)-C(2) C(1)-C(6) C(2)-C(3) C(2)-H(2) C(6)-C(7) C(8)-C(9) C(8)-H(8) C(9)-C(10) C(10)-C(11)	1.391(5)/1.396 1.392(5)/1.404 1.372(5)/1.392 0.9500/1.085 1.510(5)/1.516 1.448(4)/1.458 0.9500/1.100 1.405(4)/1.404 1.376(4)/1.389	$\begin{array}{c} C(10)-H(10)\\ C(11)-C(12)\\ C(15)-C(16)\\ C(16)-C(17)\\ C(16)-H(16)\\ C(17)-C(18)\\ C(17)-C(18)\\ C(18)-C(21)\\ C(21)-H(21A) \end{array}$	0.9500/1.088 1.404(4)/1.406 1.387(5)/1.403 1.387(5)/1.392 0.9500/1.086 1.391(5)/1.401 1.507(5)/1.511 0.9800/1.095
Angle (°)	Exp./cal.	Angle (°)	Exp./cal.	Angle (°)	Exp./cal.
$\begin{array}{c} C(7)-N(1)-N(2)\\ C(7)-N(1)-H(1)\\ N(2)-N(1)-H(1)\\ C(8)-N(2)-N(1)\\ C(12)-N(3)-C(22) \end{array}$	119.5(3)/119.2 122(2)/120.0 118(2)/119.2 113.9(3)/116.6 123.2(3)/120.4	$\begin{array}{c} C(12)-N(3)-C(15)\\ C(22)-N(3)-C(15)\\ C(2)-C(1)-Cl(1)\\ C(6)-C(5)-H(5)\\ C(1)-C(6)-C(7) \end{array}$	118.2(3)/120.5 116.9(2)/119.1 118.7(3)/115.9 119.7/117.0 122.7(3)/128.8	O(1)C(7)N(1) O(1)C(7)C(6) N(2)C(8)C(9) N(2)C(8)H(8)	125.5(3)/123.4 121.6(3)/120.5 121.7(3)/122.1 119.2/121.3
Torsion angle (Å)	Exp./cal.	Torsion angle (Å)	Exp./cal.	Torsion angle (Å)	Exp./cal.
$\begin{array}{c} C(7)-N(1)-N(2)-C(8)\\ Cl(1)-C(1)-C(6)-C(7)\\ N(2)-N(1)-C(7)-O(1)\\ N(2)-N(1)-C(7)-C(6)\\ C(1)-C(6)-C(7)-O(1) \end{array}$	177.9(3)/179.6 7.1(4)/8.9 2.9(5)/3.9 -172.6(3)/-179.6 61.4(5)/31.0	$\begin{array}{c} N(1)-N(2)-C(8)-C(9)\\ N(2)-C(8)-C(9)-C(10)\\ C(8)-C(9)-C(10)-C(11)\\ C(22)-N(3)-C(12)-C(13)\\ C(15)-N(3)-C(12)-C(13)\\ \end{array}$	-178.8(3)/-179.9 -14.6(5)/-0.41 177.9(3)/179.6 16.5(5)/34.0 -147.9(3)/-145.1	$\begin{array}{c} C(12)-N(3)-C(15)-C(20)\\ C(22)-N(3)-C(15)-C(20)\\ C(12)-N(3)-C(15)-C(16)\\ C(22)-N(3)-C(15)-C(16)\\ C(5)-C(6)-C(7)-O(1) \end{array}$	-130.3(3)/-135.7 64.3(4)/65.1 51.3(4)/45.6 -114.1(3)/-115.2 -114.4(4)/-116.7

Exp./cal. = experimental/calculated.

Download English Version:

https://daneshyari.com/en/article/1408443

Download Persian Version:

https://daneshyari.com/article/1408443

Daneshyari.com