Contents lists available at ScienceDirect

Journal of Molecular Structure

journal homepage: http://www.elsevier.com/locate/molstruc

EPR g factors and defect structures for V^{4+} and Cr^{5+} in the rutile-type crystals

Minjie Wang, Lianxuan Zhu^{*}

College of Sciences, Henan Agricultural University, Zhengzhou 450002, China

ARTICLE INFO

Article history: Received 3 February 2016 Received in revised form 19 March 2016 Accepted 21 March 2016 Available online 29 March 2016

PACSnumbers: 75.10.Dg 76.30.Fc 71.70.Ch

Keywords: Crystal structures EPR g-factor Charge-transfer (CT) excited states Impurity

1. Introduction

Rutile-type crystals TiO₂ and GeO₂ have been of considerable theoretical and experimental interest because of their unique optical, dielectric, magnetic and catalytic properties when doped with transition-metal (TM) ions [1–9]. Their properties most closely relate to the electronic levels and structures of TM impurity centers in crystals. Electron Paramagnetic Resonance (EPR) is a very efficient technique to probe the local magnetic and structural properties of crystals [10,11]. So, the EPR spectra of TiO₂:V⁴⁺ and GeO₂:V⁴⁺ were carried out by the cw and pulsed experiment and the anisotropic g-factors were measured [12]. The g-factor of TiO₂:Cr⁵⁺ was also obtained by Weckhuysen in 1993 [13]. Gallay et al. established a simple point-charge model to interpret the gfactors of $TiO_2: V^{4+}$ and $GeO_2: V^{4+}$ [12]. In such a model, the nearneighbor oxygen ions are taken into account, and the radial averages $\langle r^2 \rangle$ and $\langle r^4 \rangle$ were adjusted for comparison to experimental EPR g-factor. However, the model did not take into account some

E-mail address: zhulianxuan@henau.edu.cn (L. Zhu).

ABSTRACT

The g-factor formulas for V⁴⁺ and Cr⁵⁺ ions in the rutile-type crystals are deduced from Jahn-Teller effect and contributions of the charge transfer levels. The tetragonal distortions $\Delta R = -0.0045$, -0.0045and -0.0067 nm, and $\Delta \theta = 0^{\circ}$, -0.001° and 0° , for GeO₂:V⁴⁺, TiO₂:V⁴⁺ and TiO₂:Cr⁵⁺, respectively. The calculations of the g-factors agree well with the experimental values. The contributions of the charge transfer levels to g factors increase with the increasing valence state. It must be taken into account in the precise calculations of g factors for the high valence state d^1 ions in crystals.

© 2016 Elsevier B.V. All rights reserved.

important factors, including charge-transfer levels, spin—orbit coupling interactions in ligand orbitals and local lattice deformations caused by the Jahn-Teller effect. In fact, they are very important of the analysis of the EPR spectra.

In this paper, the complete high-order perturbation formulas are established based on Jahn-Teller effect, contributions of the charge-transfer (CT) levels, and that of the spin—orbit coupling effect. The EPR g-factors are calculated for $GeO_2:V^{4+}$, $TiO_2:V^{4+}$ and $TiO_2:Cr^{5+}$ crystals. It is found that the contribution of the CT levels to the EPR g-factors for Cr^{5+} ions is critical and cannot be ignored, because the energies of the CT levels decline and the impurity-ligand orbital admixtures become more obvious owing to higher valence.

2. Theory and formulas

The O-Ti (or O-Ge) octahedral is minorly elongated in the pure rutile-type crystals TiO₂ and GeO₂, with four shorter perpendicular bonds and two longer parallel bonds. The planar bond angles (θ) are slightly different from the ideal value 90° for an equilateral octahedron. The V⁴⁺ ion replaces the host Ti⁴⁺ and Ge⁴⁺ in TiO₂:V⁴⁺ and GeO₂:V⁴⁺, and the Cr⁵⁺ ion replaces the host Ti⁴⁺ ion in TiO₂:Cr⁵⁺.

CrossMark

^{*} Corresponding author. College of Sciences, Henan Agricultural University, NO. 95 Wenhua Road, Zhengzhou City, Henan Province 450002, China.

 $g_{\mathbf{x}} = g_{\mathbf{e}} + \varDelta g_{\mathbf{x}}^{L} + \varDelta g_{\mathbf{x}}^{T}$

(1)

 $W_1 = 10D_q$,

The impurity ions V⁴⁺ and Cr⁵⁺ are surrounded by six O²⁻ ions to form an octahedral cluster in the crystals. When V⁴⁺ or Cr⁵⁺ is in an octahedral field, the energy level ²*D* would be split into ²*E*_g and ²*T*_{2g} levels. The lower ²*E*_g level is further separated into two orbital singlets ²*A*_{1g}($|d(z^2) >$) and ²*B*_{1g}(|d(xy)>), while the original lower orbital triplet ²*T*_{2g} is split into three orbital singlets ²*B*_{2g}(<d(xz)|), ²*B*_{3g}(<d(yz)|) and ²*B*_{1g}($<d(x^2-z^2)|$). Thus, the perturbation formulas of the g factors may be written as

$$\begin{split} g_{y} &= g_{e} + \Delta g_{y}^{L} + \Delta g_{y}^{T}, \\ g_{z} &= g_{e} + \Delta g_{z}^{L} + \Delta g_{z}^{T}, \\ \Delta g_{x}^{L} &= -\frac{2k_{L}'\xi_{L}'\xi_{L}}{W_{1}^{2}} - \frac{2k_{L}'\xi_{L}'}{W_{2}} + \frac{k_{L}\xi_{L}'^{2}}{2W_{2}^{2}} - \frac{k_{L}\xi_{L}^{2}}{2W_{3}^{2}} + \frac{2k_{L}'\xi_{L}'\xi_{L}}{W_{3}W_{1}}, \\ \Delta g_{y}^{L} &= -\frac{2k_{L}'\xi_{L}'\xi_{L}}{W_{1}^{2}} - \frac{k_{L}\xi_{L}^{2}}{2W_{2}^{2}} - \frac{2k_{L}'\xi_{L}'}{W_{3}} + \frac{k_{L}\xi_{L}^{2}}{2W_{3}^{2}} + \frac{2k_{L}'\xi_{L}'\xi_{L}}{W_{1}W_{2}}, \\ \Delta g_{z}^{L} &= -\frac{8k_{L}'\xi_{L}'}{W_{1}} + \frac{2k_{L}'\xi_{L}'^{2}}{2W_{2}^{2}} - \frac{k_{L}\xi_{L}^{2}}{2W_{2}^{2}} - \frac{k_{L}\xi_{L}^{2}}{2W_{3}^{2}} + \frac{k_{L}\xi_{L}^{2}}{W_{2}W_{3}}, \\ \Delta g_{x}^{T} &= \frac{2\xi_{T}'k_{T}'}{W_{n}} - \frac{3\xi_{T}'^{2}k_{T}'}{W_{m}W_{n}}, \\ \Delta g_{z}^{T} &= \frac{2\xi_{T}'k_{T}'}{W_{n}} - \frac{3\xi_{T}'^{2}k_{T}'}{W_{m}W_{n}}, \\ \Delta g_{z}^{T} &= \frac{8\xi_{T}k_{T}}{W_{m}} + \frac{6\xi_{T}\xi_{T}'k_{T}}{W_{m}^{2}}, \end{split}$$

in which g_0 (~2.0023) is the free-ion g value; the superscript (or subscript) L denote the crystal-field mechanism and T is related to the CT levels. The SO coupling parameters ξ and ξ' as well as the orbital reduction factors k and k' are expressed below:

$$\begin{split} \xi_{L} &= A_{t}^{a} \left[\xi_{d}^{0} + \frac{3}{2} (\mu_{t}^{a})^{2} \xi_{p}^{0} \right], \\ \xi'_{L} &= \sqrt{A_{t}^{a} A_{e}^{a}} \left(\xi_{d}^{0} - \frac{3}{2} \mu_{t}^{a} \mu_{e}^{a} \xi_{p}^{0} \right), \\ k_{L} &= A_{t}^{a} \left[1 + 2\sqrt{3} \mu_{t}^{a} G_{t} + \frac{3}{2} (\mu_{t}^{a})^{2} \right], \\ k'_{L} &= \sqrt{A_{t}^{a} A_{e}^{a}} \left(1 + \sqrt{3} \mu_{t}^{a} G_{t} + \sqrt{3} \mu_{e}^{a} G_{e} - \frac{3}{2} \mu_{t}^{a} \mu_{e}^{a} \right), \\ \xi_{T} &= \sqrt{A_{t}^{a} A_{t}^{b}} \left(\xi_{d}^{0} + \frac{3}{2} \mu_{t}^{a} \mu_{t}^{b} \xi_{p}^{0} \right), \\ \xi'_{T} &= \sqrt{A_{e}^{b} A_{t}^{a}} \left(\xi_{d}^{0} - \frac{3}{2} \mu_{t}^{a} \mu_{e}^{b} \xi_{p}^{0} \right), \end{split}$$

$$k_{T} = \sqrt{A_{t}^{a}A_{t}^{b}} \left(1 + \sqrt{3}\mu_{t}^{b}G_{t} + \sqrt{3}\mu_{t}^{a}G_{t} + \frac{3}{2}\mu_{t}^{a}\mu_{e}^{b} \right),$$

$$k_{T}' = \sqrt{A_{t}^{a}A_{e}^{b}} \left(1 + \sqrt{3}\mu_{e}^{b}G_{e} + \sqrt{3}\mu_{t}^{a}G_{t} - \frac{3}{2}\mu_{t}^{a}\mu_{e}^{b} \right),$$
 (2)

where $\xi 0 d$ and $\xi 0 p$ are the spin—orbit parameter of free d^1 ion and that of free ligand ion. We have $\xi 0 d(V^{4+}) = 248 \text{ cm}^{-1}$ [14], $\xi 0 d(\text{Cr}^{5+}) = 383 \text{ cm}^{-1}$ and $\xi 0 p(O^{2-}) = 150 \text{ cm}^{-1}$ [15,16]. *AM Y* denotes the normalization coefficient and $\mu M \tau$ is the orbital mixing coefficient. The superscript *M* (a or b) represents the anti-bonding or the bonding orbital, and the subscript *Y*(t or e) indicates the cubic irreducible representations. They can be determined as follows:

$$\begin{aligned} A_Y^M &= \frac{1}{1 + 2\sqrt{3}\mu_Y^M G_Y + 3(q_Y^M)^2}, \\ \mu_Y^b &= -\frac{1 + \sqrt{3}\mu_Y^a G_Y}{3\mu_Y^a + \sqrt{3}G_Y}, \\ N^2 &= (A_t^a)^2 \Big[1 + 3(\mu_t^a)^2 G_t + 2\sqrt{3}\mu_t^a G_t \Big], \\ N^2 &= (A_e^a)^2 \Big[1 + 3(\mu_e^a)^2 G_e + 2\sqrt{3}\mu_e^a G_e \Big], \end{aligned}$$
(3)

where *N* is the average covalency factor. W_m and W_n are the lowest CT energy levels. G_Y (Y = t or e) represents the group overlap integral which can be obtained from the Slater-type self-consistent field (SCF) functions [17,18]. W_i (i = 1-3) denote the zero-order energy levels for d^1 ion and can be expressed in terms of the cubic field parameter D_q and the rhombic field parameters D_s , D_t , D_ξ and D_η . They are expressed as

$$W_{2} = -12D_{s} + 10D_{t} + D_{\xi} - 16D_{\eta}$$

$$W_{3} = -12D_{s} + 10D_{t} - D_{\xi} - 16D_{\eta}$$
(4)

The rhombic field parameters D_s , D_t , D_{ξ} and $D\eta$ can be calculated from the superposition model [19]. They are given by

$$D_{s} = \frac{1}{7}\overline{A}_{2}(R)\left[\left(\frac{R}{R_{\perp}}\right)^{3} - \left(\frac{R}{R_{\parallel}}\right)^{3}\right],$$

$$D_{t} = \frac{2}{21}\overline{A}_{4}(R)\left[4\left(\frac{R}{R_{\perp}}\right)^{5} + (7\cos 2\theta + 3)\left(\frac{R}{R_{\parallel}}\right)^{5}\right],$$

$$D_{\xi} = \frac{1}{7}\overline{A}_{2}(R)\left(\frac{R}{R_{\perp}}\right)^{3}\cos\theta,$$

$$D_{\eta} = \frac{5}{21}\overline{A}_{4}(R)\left(\frac{R}{R_{\perp}}\right)^{5}\cos\theta,$$
(5)

here $\overline{A}_2(R)$ and $\overline{A}_4(R)$ are the intrinsic parameters varying with the average bonding length $R (= R_{||} + 2R_{\perp})/3$. They can be determined from the cubic crystal field parameter Dq via the relation [20–22]:

Download English Version:

https://daneshyari.com/en/article/1408901

Download Persian Version:

https://daneshyari.com/article/1408901

Daneshyari.com