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The g-factor formulas for V4" and Cr°* ions in the rutile-type crystals are deduced from Jahn-Teller effect
and contributions of the charge transfer levels. The tetragonal distortions AR = —0.0045, —0.0045
and —0.0067 nm, and 46 = 0°, —0.001° and 0°, for GeO,:V**, TiO»:V** and TiO,:Cr>", respectively. The
calculations of the g-factors agree well with the experimental values. The contributions of the charge
transfer levels to g factors increase with the increasing valence state. It must be taken into account in the
precise calculations of g factors for the high valence state d' ions in crystals.
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1. Introduction

Rutile-type crystals TiO, and GeO, have been of considerable
theoretical and experimental interest because of their unique op-
tical, dielectric, magnetic and catalytic properties when doped with
transition-metal (TM) ions [1—9]. Their properties most closely
relate to the electronic levels and structures of TM impurity centers
in crystals. Electron Paramagnetic Resonance (EPR) is a very effi-
cient technique to probe the local magnetic and structural prop-
erties of crystals [10,11]. So, the EPR spectra of TiO,:V** and
Ge0,:V** were carried out by the cw and pulsed experiment and
the anisotropic g-factors were measured [12]. The g-factor of
TiO,:Cr°* was also obtained by Weckhuysen in 1993 [13]. Gallay
et al. established a simple point-charge model to interpret the g-
factors of TiOo:V4Tand GeO,:V** [12]. In such a model, the near-
neighbor oxygen ions are taken into account, and the radial aver-
ages (%) and (r*) were adjusted for comparison to experimental
EPR g-factor. However, the model did not take into account some
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important factors, including charge-transfer levels, spin—orbit
coupling interactions in ligand orbitals and local lattice de-
formations caused by the Jahn-Teller effect. In fact, they are very
important of the analysis of the EPR spectra.

In this paper, the complete high-order perturbation formulas
are established based on Jahn-Teller effect, contributions of the
charge-transfer (CT) levels, and that of the spin—orbit coupling
effect. The EPR g-factors are calculated for Ge0,:V4T, TiO2:V* and
TiO,:Cr>* crystals. It is found that the contribution of the CT levels
to the EPR g-factors for Cr°* ions is critical and cannot be ignored,
because the energies of the CT levels decline and the impurity-
ligand orbital admixtures become more obvious owing to higher
valence.

2. Theory and formulas

The O-Ti (or O-Ge) octahedral is minorly elongated in the pure
rutile-type crystals TiO, and GeO», with four shorter perpendicular
bonds and two longer parallel bonds. The planar bond angles (6) are
slightly different from the ideal value 90° for an equilateral octa-
hedron. The V4* jon replaces the host Ti** and Ge** in Ti0,:V*+ and
GeO,:V#*, and the Cr>* ion replaces the host Ti** jon in TiO,:Cr>™.
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The impurity ions V4* and Cr°* are surrounded by six O~ ions to
form an octahedral cluster in the crystals. When V4* or Cr°* is in an
octahedral field, the energy level 2D would be split into 2Eg and *Txg
levels. The lower 2Eg level is further separated into two orbital
singlets 2Alg(|d >) and 2B1g(\d(xy , while the orlgmal lower
orbital triplet ngz is split mto three orbltal singlets Bzg(<d(xz)|)
2B3g(<d(yz )1) and “Bqg( <d(x*-z%)|). Thus, the perturbation formulas
of the g factors may be written as
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in which gg (~2.0023) is the free-ion g value; the superscript (or
subscript) L denote the crystal-field mechanism and T is related to
the CT levels. The SO coupling parameters £ and £’ as well as the
orbital reduction factors k and k’ are expressed below:
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where £0 d and £0 p are the spin—orbit parameter of free d! ion and
that of free ligand ion. We have £0 d(V**) = 248 cm™! [14], £0
d(Cr°*)=383 cm™! and £0 p(0?~) = 150 cm™~ ! [15,16]. AM Y denotes
the normalization coefficient and uM 7 is the orbital mixing coef-
ficient. The superscript M (a or b) represents the anti-bonding or
the bonding orbital, and the subscript Y (t or e) indicates the cubic
irreducible representations. They can be determined as follows:
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where N is the average covalency factor. W;;; and W,, are the lowest
CT energy levels. Gy (Y = t or e) represents the group overlap in-
tegral which can be obtained from the Slater-type self-consistent
field (SCF) functions [17,18]. W; (i = 1—3) denote the zero-order
energy levels for d! ion and can be expressed in terms of the cu-
bic field parameter Dy and the rhombic field parameters Ds, Dy, D
and D, They are expressed as

W, = 10Dy,
W; = —12Ds + 10D + D; — 16D,
W3 = —12D; + 10D, — D; — 16D, (4)

The rhombic field parameters D, Dy, D and D can be calculated
from the superposition model [19]. They are given by
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here A, (R) and A4(R) are the intrinsic parameters varying with the
average bonding length R (= R+2R,)/3. They can be determined
from the cubic crystal field parameter Dq via the relation [20—22]:
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