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Abstract

We present a modification of the weighted K-nearest neighbours imputation method (KNNimpute) for missing values (MVs) estimation in

microarray data based on the reuse of estimated data. The method was called iterative KNN imputation (IKNNimpute) as the estimation is

performed iteratively using the recently estimated values.

The estimation efficiency of IKNNimpute was assessed under different conditions (data type, fraction and structure of missing data) by the

normalized root mean squared error (NRMSE) and the correlation coefficients between estimated and true values, and compared with that of other

cluster-based estimation methods (KNNimpute and sequential KNN). We further investigated the influence of imputation on the detection of

differentially expressed genes using SAM by examining the differentially expressed genes that are lost after MV estimation.

The performance measures give consistent results, indicating that the iterative procedure of IKNNimpute can enhance the prediction ability of

cluster-based methods in the presence of high missing rates, in non-time series experiments and in data sets comprising both time series and non-

time series data, because the information of the genes having MVs is used more efficiently and the iterative procedure allows refining the MV

estimates. More importantly, IKNN has a smaller detrimental effect on the detection of differentially expressed genes.
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1. Introduction

DNA microarrays are a high-throughput technology that

allows for the simultaneously monitoring of the mRNA levels

of thousands of genes in particular cells or tissues, giving a

global view of gene expression (Lockhart and Winzeler, 2000;

Schena et al., 1995; Schulze and Downward, 2001).

The data generated in a set of microarray experiments are

usually gathered in a matrix with genes in rows and

experimental conditions in columns. Frequently, these matrices

contain missing values (MVs). This is due to the occurrence of

imperfections during the microarray experiment (e.g. insuffi-

cient resolution, spotting problems, deposition of dust or

scratches on the slide, hybridization failures) that create suspect

values, which are usually thrown away and set as missing

(Alizadeh et al., 2000). The in situ synthesized Affymetrix

GeneChips and the spotted cDNA (or oligonucleotide)

microarrays are the two most commonly used types of

microarray technology. The redundancy in design used in a

GeneChip (i.e. a gene is represented by a set of approximately

20 probe pairs) prevents the existence of MVs. This is not the

case for spotted cDNA microarrays, where usually each spot is

assigned to a unique gene, and the use of double to quadruple

spots for a gene is currently an exception. So, the loss at a spot

usually leads to the loss of information for a gene, and thus to a

MV in the gene expression data matrix. Therefore, in this work

we consider the estimation of MVs in gene expression data

obtained from spotted cDNA microarrays.

In some microarray data sets, the proportion of MVs is

significant. For example, some authors reported that the

percentage of gene profiles with at least one MV can be higher

than 85% (de Brevern et al., 2004). The presence of missing

gene expression values constitutes a problem for downstream

data analyses, since many of the methods employed (e.g.

classification and model-based clustering techniques) require
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complete matrices. Due to economic reasons or biological

sample availability, repeating the microarray experiments in

order to obtain a complete gene expression matrix is usually

unfeasible, so other alternatives have to be considered. The

simple approaches usually applied to handle missing gene

expression entries include removing the genes with MVs

before the analysis (case deletion), or replacing the MVs of a

gene with the average of the observed values over that gene

(mean substitution; Schafer and Graham, 2002). Another

common approach is to replace missing log2 transformed gene

expression ratios by zeros (Alizadeh et al., 2000). These

approaches have disadvantages: case deletion procedures may

bias the results if the remaining cases are unrepresentative of

the entire sample (Little and Rubin, 1987), while both mean

and zero substitutions distort relationships among variables

and artificially reduce the variance of the variable in question

(Little and Rubin, 1987; Schafer and Graham, 2002), since

the same value is used to replace missing entries in a given

gene.

To overcome these drawbacks, Troyanskaya et al. (2001)

proposed a method called weighted K-nearest neighbour

imputation (KNNimpute) that reconstructs the MVs using a

weighted average of K most similar genes. Overall, this

estimation method is more robust than others, such as

replacement by zero, row average or singular value decom-

position, to the fraction of missing elements and to the type of

data for which estimation is executed, performing better in non-

time series data or noisy data (Troyanskaya et al., 2001). As an

improvement of KNN imputation, Kim et al. (2004) proposed a

sequential KNN imputation method (SKNNimpute) that uses

the estimated values sequentially for the later nearest neighbour

calculation and estimation.

In a recent work, de Brevern et al. (2004) studied the stability

of gene clusters of microarray data including MVs or not,

specified by diverse hierarchical clustering algorithms, showing

that the MVs (even at a low rate) have important effects on the

gene clusters’ stability. Thus, the presence of MVs in the data

matrix should not be neglected, and MV estimation should be

regarded as a pre-processing step essential to obtain proper

results from microarray data analyses.

Although other methods have been proposed for estimating

gene expression missing data, such as regression-based

methods (Bø et al., 2004; Kim et al., 2005; Nguyen et al.,

2004; Brás and Menezes, 2006) and Bayesian approaches (Oba

et al., 2003), in this work we focus on the cluster-based

methods, since these are widely used for the replacement of

MVs in microarray data. For example, KNNimpute is the only

imputation method available in significance analysis of

microarrays (SAM; Tusher et al., 2001), prediction analysis

for microarrays (PAM; Tibshirani et al., 2002) and microarray

analysis of variance (MAANOVA; Kerr et al., 2000).

We propose an iterative procedure for the prediction of gene

expression MVs called iterative KNN imputation (IKNNim-

pute), and compare its performance with that of other

clustering-based imputation methods (KNNimpute and

SKNNimpute) for various rates of MVs and type of missing

structure using publicly available microarray data sets.

The methods are evaluated by comparing their estimates for

the artificial missing entries with the true values, using

measures such as normalized root mean squared errors,

correlation coefficients and bias. Though such approach gives

important measures of performance, a more fundamental and

functional question that should further be addressed is the effect

of the methods’ estimates on the final output of different

analysis methods, such as clustering algorithms or statistical

algorithms for the differential analysis of gene expression. In

the literature, such evaluations are lacking, and only a few cases

can be found (for example, see de Brevern et al., 2004; Ouyang

et al., 2004; Scheel et al., 2005; Jörnsten et al., 2005). In our

study, the impact of the imputation methods’ estimates on

significance analysis for differential expression is also

performed by comparing the lists of differentially expressed

genes obtained using the statistical method known as SAM

(Tusher et al., 2001). We opted to focus on the effects of

imputation on differential expression, since, although cluster

analysis of microarray data is capable of discovering coherent

patterns of gene expression, it gives little information about

statistical significance, i.e., about whether changes in gene

expression are experimentally significant.

2. Materials and methods

2.1. Notation

Throughout this paper, microarray data are represented by matrices with rows

corresponding to genes and columns to experimental conditions. In particular, G

represents the original data matrix (with real MVs), while X is a gene expression

matrix with p genes and n experiments (with p� n) that may contain missing

entries. The ith row of X represents the expression profile of the ith gene in the n

experiments, whereas xij denotes the expression level of gene i in sample j.

Using the notation of Nguyen et al. (2004), a gene with MVs is called target

gene, and the genes with available information for estimating its missing entries

constitute the set of candidate genes.

We also make use of the missing indicator matrix, R, defined by Rubin

(1976) to track the missing and non-missing entries of X. If the expression value

xij is available, the ijth element of R, rij, is equal to 1, otherwise it is zero.

2.2. Weighted KNN imputation and SKNN imputation

In cluster-based estimation, MVs are estimated by combining the expression

levels of K-nearest genes chosen based on a given similarity measure. Thus,

KNN predictions are based on the intuitive assumption that objects close in

distance are potentially similar. Both the measure to use for computing

similarities between genes and the number of nearest neighbours (K) must

be determined.

For a given target gene xi, KNNimpute (Troyanskaya et al., 2001) calculates

a weighted Euclidean distance dik between the target gene i and each candidate

gene k using the expression:

dik ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1 ri jrk jðxk j � xi jÞ2Pn

j¼1 ri jrk j

vuut (1)

where rij is the element in the ith row and jth column of the missing indicator

matrix R. The missing entry j of target gene i is then estimated by the weighted

average of the expression values of the K most similar genes in experiment j:

ŷi j ¼
XK

k¼1

wikxk j (2)
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