Contents lists available at ScienceDirect

Journal of Molecular Structure

journal homepage: www.elsevier.com/locate/molstruc

Precise structural analysis of α -helical copolypeptide H-(Ala-Gly)₉-OH by quantum chemical calculation and high-resolution solid-state NMR measurement

Hiroyuki Souma^a, Yoko Shigehisa^a, Hiromichi Kurosu^b, Akira Shoji^{a,*}

^a Department of Chemistry and Chemical Biology, Graduate School of Engineering, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma 376-8515, Japan ^b Graduate School of Humanities and Sciences, Nara Women's University, Kitauoya-Nishimachi, Nara 630-8506, Japan

ARTICLE INFO

Article history: Received 2 February 2008 Received in revised form 2 March 2008 Accepted 4 March 2008 Available online 13 March 2008

Keywords: α-Helix H-(Ala-Gly)₉-OH CP-MAS NMR Chemical shift Conformational parameter Quantum chemical calculation

ABSTRACT

We computed the optimized structure of sequential 18-mer copolypeptide H-(Ala-Gly)₉-OH (C₄₅H₇₄N₁₈O₁₉) adopting an right-handed α -helix (α_R -helix) conformation with the basis set of DFT/ 6-31G(d), and then calculated the nuclear shieldings of the optimized structure with the basis set of DFT/6-311G(d,p). As a result, we confirmed highly accurate conformational parameters characteristic to the α_R -helical H-(Ala-Gly)₉-OH, which were identical with those of the individual Ala and Gly residues. Most of these parameters were fundamentally the same as those obtained for the optimized α_R -helical H-(Ala)₁₈-OH. Furthermore, it was found that the calculated isotropic ¹³C and ¹⁵N chemical shifts were dependent on the nature of individual amino acid residues, which were greatly in good agreement with those of α_R -helical model copolypeptides consisting of L-alanine and glycine residues measured by high-resolution solid-state NMR.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

It is very useful to analyze the secondary structure of polypeptides and proteins by a precise structural calculation. Very recently, noticeable progress in computer science has made possible to realize a precise structural optimization of polypeptide molecule to characterize the secondary structure [1,2]. To achieve the goal of this study successfully, it is necessary, as the minimum requirement, to complete the optimized structural calculation of sequential copolypeptide chain by using the density functional theory [3] (DFT: B3LYP (Becke's three parameter hybrid method using the Lee, Yang and Parr (LYP) correlation functional) [4,5]) with extended 6-31G(d) basis set level, which has been accepted as trustworthy for a credible molecular orbital theory at present. In addition, it is necessary to calculate the nuclear shieldings of the optimized structure by using the gauge-included atomic orbital (GIAO)-Coupled Hartree-Fock (CHF) approach [6,7] with B3LYP/ 6-311G(d,p) basis set level, which has been also authorized in nuclear shielding calculation.

In our previous paper [1], it has been reported that the precise structural optimization calculation and its nuclear shieldings of the most acceptable α_R -helical poly(L-alanine) (H-(Ala)₁₈-OH) have been successfully accomplished using Gaussian03 program with B3LYP/6-31G(d) and B3LYP/6-311G(d,p) basis sets, respectively.

* Corresponding author. Tel./fax: +81 277 301443.

E-mail address: akirashoji@chem-bio.gunma-u.ac.jp (A. Shoji).

As a result, we have proved the highly precise structural geometry and conformational parameters characteristic to the most acceptable α_{R} -helical H-(Ala)₁₈-OH: dihedral angles (ϕ, ψ, ω) = $(-62^\circ, -43^\circ, 178^\circ)$, hydrogen-bond distances **R**_{0...H} = 0.205 nm and $\mathbf{R}_{0...N} = 0.303$ nm, and hydrogen-bond angles C'=0...H = 149° and $N-H...O = 160^\circ$. These parameters have been in good agreement with those of X-ray and neutron diffraction data in protein databank (PDB). Furthermore, the calculated isotropic ¹H and ¹³C chemical shifts have been identical with those of α_R -helical poly(L-alanine) measured by the high-resolution solid-state NMR (¹H CRAMPS and ¹³C CP-MAS NMR). These conformational parameters and chemical shifts are very useful to elucidate the nature of the electronic structure and to determine the precise secondary structure of proteins theoretically [1,2]. This implies that such a precise structural calculation has a very high capacity of prediction of a secondary structure. However, for this purpose, we must solve the problem whether the optimization calculation in such precise level is reliable for copolypeptides as models of natural proteins, as a continuation of our previous work [1].

In this study, we aimed to test whether the precise calculation method is applicable to the secondary structure optimization of a simple copolypeptide as a model of protein structural analysis or not. For this, we applied to calculate the optimized structure of a well-defined α_R -helical sequential 18-mer copolypeptide consists of L-alanine (Ala) and glycine (Gly) residues, H-(Ala-Gly)₉-OH (C₄₅H₇₄N₁₈O₁₉). Here, the Gly is the smallest α_R -helix breaking amino acid residue [8], and the Ala is the very strong α_R -helix

^{0022-2860/\$ -} see front matter \odot 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.molstruc.2008.03.004

supporting residue. Therefore, it is meaningful to confirm theoretically whether the alternate copolypeptide of repeating Ala-Gly sequences at counterbalance stabilizes an α_R -helix conformation or not, in relation to the secondary structural analysis of silk fibroins such as *Bombix mori* [9]. Furthermore, we compared the calculated isotropic ¹³C and ¹⁵N chemical shifts of the Ala and Gly residues with those of the individual Ala and Gly residues of the α_R -helical model copolypeptides, respectively, by ¹³C and ¹⁵N NMR measurements. From this study, it would be expected that the optimization of a hypothetical precise secondary structure (main-chain conformation) of copolypeptides would give valuable information in structural analysis of polypeptides and proteins.

2. Experimental

2.1. Quantum chemical calculation

We calculated with the Gaussian03 D.01 program [10] for structural optimization with the basis set of B3LYP/6-31G(d), and used with the B3LYP/6-311G(d,p) basis set for nuclear shielding calculation. The geometrical parameters of the model compound were optimized for bond lengths, bond angles, and dihedral angles. The main initial parameters of α_R -helical H-(Ala-Gly)₉-OH used in this study were as follows; (1) Ala residues - bond lengths (nm): 0.145 (N–C^{α}), 0.152 (C^{α}–C'), 0.134 (C'–N), 0.153 (C^{α}–C^{β}), 0.126 (C'=O), 0.100 (N-H), 0.109 (C^{α}-H^{α} and C^{β}-H^{β}), bond angles (degree): 120.0 (H–N–C^{\alpha}, C^{\alpha}–C'=O, N–C'=O, N–C'–C^{\alpha}, H–N–C', $C'-N-C^{\alpha}$ and H-N-H), 111.1 ($N-C^{\alpha}-C^{\beta}$ and $N-C^{\alpha}-C'$), 109.5 $(N-C^{\alpha}-H^{\alpha})$, 108.6 $(H^{\alpha}-C^{\alpha}-C' \text{ and } H^{\alpha}-C^{\alpha}-C^{\beta})$, 107.8 $(C'-C^{\alpha}-C^{\beta})$, dihedral angles (degree): -57.0 (ϕ : C'-N-C^{α}-C'), -47.0 (ψ : N–C^{α}–C^{\prime}–N) and 180.0 (ω : C^{α}–C^{\prime}–N–C^{α}); (2) Gly residue – bond lengths (nm): 0.145 (N-C^a), 0.152 (C^a-C'), 0.134 (C'-N), 0.126 (C'=0), 0.100 (N-H), 0.109 $(C^{\alpha}-H^{\alpha})$ and $C^{\alpha}-H^{\alpha'}$, 0.096 (O-H), 0.143 (C'-O), bond angles (degree): 120.0 (H-N-C^a, C^a-C'=O, N–C'=O, N–C'–C°, H–N–C' and C'–N–C°), 110.4 (N–C°–C'), 109.5 (N–C^{α}–H^{α} and N–C^{α}–H^{α'}), 109.4 (H^{α}–C^{α}–H^{α'}), 109.0 $(H^{\alpha}-C^{\alpha}-C' \text{ and } C'-C^{\alpha}-H^{\alpha'})$, dihedral angles (degree): -57.0 $(\phi: C'-N-C^{\alpha}-C'), -47.0 \ (\psi: N-C^{\alpha}-C'-N), \text{ and } 180.0$ (ω : C^{α}-C'-N-C^{α}).

Next, we calculated the structural optimization for adamantane (C₁₀H₁₆) as a reference material of ¹H and ¹³C chemical shift using the same basis set as B3LYP/6-31G(d) in structural optimization and B3LYP/6-311G(d,p) for nuclear shielding calculation. We used the ¹H and ¹³C chemical shift values of adamantane methine proton and methine carbon as 1.87 ppm (CRAMPS) [1,2,11], and 29.47 ppm (CP-MAS) [1,2,12] from tetramethylsilane (TMS; δ 0), respectively. Here, the ¹H and ¹³C nuclear shieldings of TMS were estimated as 32.03 and 177.77 ppm, respectively, as reported previously [1,2]. In addition, we used the ¹⁵N chemical shift value as 98.80 ppm from ¹⁵NH₄NO₃ (δ 0), where the ¹⁵N nuclear shieldings of ¹⁵NH₄NO₃ was estimated as 213.21 ppm.

2.2. Sample

A well-defined copolypeptide sample containing glycine residue, FLA-11G, H-(Phe-Leu-Ala)₂-Phe-Leu^C-Ala-Phe-Gly-Ala^N-(Phe-Leu-Ala)₂-OH (where Phe = L-phenyl alanine, Leu = L-leucine, Ala = L-alanine, Leu^C = 1^{-13} C labelled L-leucine, and Ala^N = 2^{-15} N labelled L-alanine residues), was synthesized by solid-phase peptide synthesis using 9050 PLUS Pepsynthesizer (PerSeptive Biosystems) [2,9]. In this experiment, we used Fmoc-Ala-PEG-PS resin (Fmoc = 9-fluorenylmethoxycarbonyl) as a solid supporting resin. The Fmoc group was eliminated from Fmoc-Ala-PEG-PS resin with piperidine, and HATU (O-(7-azabenzotriazol-yl)-1,1,3,3-tetrameth-yluronium hexafluorophosphate) was used for activation reaction.

After the final step of synthesis, the polypeptide as synthesized was cleaved from the solid support by using 95% trifluoroacetic acid, then treated with diethyl ether to precipitate.

2.3. NMR measurement

The solid-state ¹⁵N CP-MAS NMR measurement was performed using a Bruker DSX300 spectrometer operating at 30.42 MHz, equipped with a CP-MAS probe. The ¹⁵N chemical shift was calibrated indirectly by external ¹⁵NH₄Cl (18.0 ppm relative to ¹⁵NH₄NO₃). The experimental error in the isotropic ¹⁵N chemical shifts was estimated to be less than ±0.5 ppm [9].

3. Results and discussion

3.1. Precise characteristic parameters of α_R -helical structure

We computed a precise structural optimization and determined its characteristic parameters of the α_R -helical structure of H-(Ala-Gly)₉-OH. Fig. 1 shows the optimized molecular structure of α_R -helical H-(Ala-Gly)₉-OH (the dotted line represents the hydrogen-bonding formation).

The optimized structure of H-(Ala-Gly)₉-OH was maintained typical α_R -helix conformation, which was quite similar to the α_{R} -helical H-(Ala)₁₈-OH as reported previously [1]. Therefore, it was assumed that the optimized α_R -helical structure of H-(Ala-Gly)₉-OH was one of the stable secondary structure. The secondary structure of inner Ala and Gly residues (residual nos. 6-13) were assumed to be typical $\alpha_{\rm R}$ -helix, whereas both end portions (the residual nos. 1-5 and 14-18) of the H-(Ala-Gly)₉-OH were formed only one hydrogen-bond per each residue except for residual numbers 4, 14 and 15. However, it is meaningful that the C'=O of the Nterminal residue (1st Ala residue: ¹Ala) displayed a hydrogen-bond with the N–H of 4th Gly residue (⁴Gly) (which is not an α_R -helix but a 3₁₀-helix) and the N–H of 5th Ala residue (⁵Ala) was free (no hydrogen-bond). On the other hand, the hydrogen-bond was maintained between the C-terminal N-H of the ¹⁸Gly residue and the C'=O of ¹⁴Gly residue, and between the C-terminal O-H of the ¹⁸Gly residue and the C'=O of ¹⁵Ala residue, respectively, which were not the typical α_R -helix. Therefore, we calculated the mean values of the inner 6 residues (⁷Ala to ¹²Gly residue) for the safety to determine the characteristic conformational parameters and chemical shift values of the most acceptable α_R -helical H-(Ala-Gly)9-OH. The calculated structural geometry and conformational parameters of the α_R -helical H-(Ala-Gly)₉-OH were as below; (1) Ala residues – bond lengths (nm): 0.146 (N– C^{α}), 0.154 $(C^{\alpha}-C')$, 0.135 (C'-N), 0.153 $(C^{\alpha}-C^{\beta})$, 0.123 (C'=O), 0.102 (N-H), 0.109 (C^{α} — H^{α} and C^{β} — H^{β}); bond angles (degree): 118.9 (H—N— C^{α}), 109.2 (N- C^{α} - H^{α}), 110.1 (N- C^{α} - C^{β}), 110.9 (C'- C^{α} - C^{β}), 111.9 $(N-C^{\alpha}-C')$, 104.5 $(H^{\alpha}-C^{\alpha}-C')$, 110.1 $(H^{\alpha}-C^{\alpha}-C^{\beta})$, 120.3 $(C^{\alpha}-C'=0)$, 123.0 (N-C'=0), 116.7 $(N-C'-C^{\alpha})$, 120.1 (H-N-C'), 121.0 (C'-N-C^{α}); dihedral angles (°): -61.8 (ϕ : C'-N-C^{α}-C'), -42.6 (ψ : N-C^{α}-C'-N), 177.9 (ω : C^{α}-C'-N-C^{α}): hydrogen-bond distances (nm): 0.200 (R_{0i...Hi+4}), 0.299 (R_{0i...Ni+4}), 0.314 $(R_{C'i,..Hi+4})$, 0.415 $(R_{C'i,..N_i+4})$; hydrogen-bond angles (degree): 151.0 $(C'_{i}=O \dots H_{i+4})$, 163.6 $(N_{i+4}-H \dots O_{i})$; hydrogen-bond dihedral angle (degree): 150.1 ($C'_i=0...H-N_{i+4}$); (2) Gly residues – bond lengths (nm): 0.145 (N– C^{α}), 0.154 (C^{α} –C'), 0.135 (C'–N), 0.123 (C'=O), 0.102 (N–H), 0.109 (C^{α} –H^{α} and C^{α} –H^{α'}) (where H^{α'} denotes the other proton bonded to the C^{α} of the Gly residue); bond angles (degree): 119.0 (H–N–C^{α}), 111.2 (N–C^{α}–H^{α}), 107.7 (N–C^{α}–H^{α'}), 113.3 (N- C^{α} -C'), 106.2 (H^{α}-C^{α}-C'), 109.6 (H^{α'}-C^{α}-C'), 108.7 $(H^{\alpha}-C^{\alpha}-H^{\alpha'})$, 120.5 ($C^{\alpha}-C'=0$), 123.3 (N-C'=0), 116.2 (N-C'-C^{\alpha}), 120.5 (H–N–C'), 120.4 (C'–N–C^α); dihedral angles (°): –61.7 (φ: C'-N-C^{α}-C'), -43.6 (ψ : N-C^{α}-C'-N), 176.5 (ω : C^{α}-C'-N-C^{α}):

Download English Version:

https://daneshyari.com/en/article/1410584

Download Persian Version:

https://daneshyari.com/article/1410584

Daneshyari.com