

Available online at www.sciencedirect.com

Journal of Molecular Structure 782 (2006) 157-164

Journal of MOLECULAR STRUCTURE

www.elsevier.com/locate/molstruc

Crystal and molecular structure of 3-methyl-4-(2,4,6-triphenylpyridinium-1-yl)-phenolate salts with *o*-arsanilic and perchloric acids

Łukasz Wojtas*, Piotr Milart, Katarzyna Stadnicka

Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Kraków, Poland

Received 19 July 2005; accepted 5 August 2005 Available online 19 September 2005

Abstract

The crystal structure for two salts of 3-methyl-4-(2,4,6-triphenylpyridinium-1-yl)-phenolate (1) with *o*-arsanilic (2-aminobenzenearsonic) and perchloric acids were determined by X-ray diffraction. **1** was synthesized in order to break the symmetry of 4-(2,4,6triphenylpyridinium-1-yl)-phenolate (2) and to overcome a tendency of the molecule for centrosymmetrical arrangement in a crystalline state. The structure of $1 \cdot \text{HClO}_4$ (space group Pbca) is governed by an antiparallel arrangement of pyridinium cations, connected to perchlorate anions through hydrogen bonds of O–H···O type. The crystals of $1 \cdot \text{H}_2\text{NC}_6\text{H}_4\text{AsO}_3\text{H}_2 \cdot \text{H}_2\text{O}$ belong to tetragonal space group $I\bar{4}$. Due to strong O–H···O⁻ and moderate N–H···O⁻ interactions, hydrogen *o*-arsaniliate counterions form aggregates to which the cations of **1** are connected via O–H···O=As hydrogen bonds. The anionic aggregates are linked together by the crystallization water molecules through the system of hydrogen bonds.

The comparison of the 1-(4-hydroxy-2-methylphenyl)-2,4,6-triphenylpyridinium hydrogen *o*-arsanilate and perchlorate structures reveals the importance of choosing the appropriate acids in order to obtain desired structure properties. © 2005 Elsevier B.V. All rights reserved.

Keywords: Pyridinium betaine dye; o-Arsanilic acid; Perchloric acid; Crystal engineering; Crystal structure; Intermolecular interactions

1. Introduction

An application of crystals in non-linear optics (e.g. SHG) demands non-centrosymmetric, polar solids. Among many of the investigated compounds the push–pull chromophore systems were found to be important for NLO properties [1]. The studied compound 3-methyl-4-(2,4,6-triphenylpyridinium-1-yl)-phenolate (1), a methyl derivative of 4-(2,4,6-triphenylpyridinium-1-yl)-phenolate (2), Scheme 1, can be considered as such a push-pull system. 2 shows substantial negative solvatochromic effect [2] but unfortunately it has tendency to form antiparallel dipole–dipole arrangements and subsequently its salts crystallize in centrosymmetrical space groups [3]. Because the non-centrosymmetric crystals

with push-pull chromophores could be utilized as NLO materials, the modification of 2 by introducing the methyl group to the phenolate ring was designed to break the symmetry of 2 without loosing its solvatochromic properties.

o-Arsanilic acid was used to build the stable hydrogenbond network, to which betaine dye cations could be linked to. It was expected that hydrogen o-arsanilate anions would prevent the betaine dye cations to form an antiparallel arrangement observed in the salt of **1** with perchloric acid. The strategy appeared to be successful and let us to obtain non-centrosymmetric crystals ($I\bar{4}$) potentially useful in NLO application.

In the present paper the structures of 1-(4-hydroxy-2-methylphenyl)-2,4,6-triphenyl-pyridinium hydrogen *o*-arsanilate ($1 \cdot H_2NC_6H_4AsO_3H_2 \cdot H_2O$) and 1-(4-hydroxy-2-methylphenyl)-2,4,6-triphenylpyridinium perchlorate ($1 \cdot HClO_4$) are analyzed, and the utilization of 1-(4-hydroxy-2-methylphenyl)-2,4,6-triphenylpyridinium cation in designing of NLO materials was discussed.

^{*} Corresponding author. Tel.: +48 12 6632059; fax: +48 12 6340515. *E-mail address:* wojtas@chemia.uj.edu.pl (Ł. Wojtas).

2. Experimental

2.1. Materials and methods

The pale yellow crystals of $1 \cdot H_2 NC_6 H_4 AsO_3 H_2 \cdot H_2 O$ (Mp. 204–206 °C) and the colourless crystals of $1 \cdot HClO_4$

Table 1 Crystal data and structure refinement conditions for the salts of **1**

(Mp. 300–301 °C), suitable for X-ray analysis, were grown from water and acetonitrile solutions, respectively, by slow evaporation of the mixture containing 3-methyl-4-(2,4,6-triphenylpyridinium-1-yl)-phenolate and the appropriate acid in molar ratio 1:1.

2.1.1. 1-(4-Hydroxy-2-methylphenyl)-

2,4,6-triphenylpyridinium perchlorate

2,4,6-Triphenylpyrylium perchlorate (1.0 g, 2.5 mmol) was suspended in ethanol (15 cm³). 4-Amino-3-methylphenol (0.62 g, 5.0 mmol) was added and the mixture was refluxed for 2 h with constant stirring. The precipitated colourless solid was collected by filtration and purified by re-crystallization from ethanol (ca. 60 cm³) to afford 1.19 g (94%) of pyridinium salt. Mp 300–301 °C.

¹H NMR([D₆]DMSO/TMS); δ (ppm): 9.78 (s, 1H, OH), 8.66 (s, 2H, pyridinium-H), 8.35 (d, 2H, J = 8.0 Hz, 2-and 6-H of aromatic ring 4), 7.64–7.70 (m, 3H, 3-, 4-and 5-H of

Identification code	Hydrogen o-arsanilate	Perchlorate (RT)	Perchlorate (LT)
Crystal data			
Chemical formula	C ₃₀ H ₂₄ NO ⁺ , C ₆ H ₇ NAsO ₃ ⁻ , H ₂ O	$C_{30}H_{24}NO^+, ClO_4^-$	$C_{30}H_{24}NO^+$, ClO_4^-
Mr	645.75	513.95	513.95
Temperature (K)	293(2)	293(2)	100(2)
Wavelength (Å)	0.71073	0.71073	0.71073
Crystal system, space group	Tetragonal, <i>I</i> 4	Orthorhombic, Pbca	Orthorhombic, Pbca
Unit cell dimensions (Å, °)	a = 20.9886(4), c = 15.0478(5)	a = 16.4057(3), b = 17.3811(3), c = 18.1089	a = 16.1333(3), b = 17.2841(3), c = 17.9208(3)
$V(Å^3)$	6629.2(3)	5163.7(2)	4997.2(2)
Z , $Dx (mg/m^3)$	8, 1.294	8, 1.322	8, 1.366
$\mu (\text{mm}^{-1})$	1.068	0.189	0.195
<i>F</i> (000)	2669	2144	2144
Crystal size (mm)	$0.25 \times 0.12 \times 0.12$	$0.57 \times 0.30 \times 0.07$	$0.57 \times 0.30 \times 0.07$
Crystal form, colour	Prisms, pale yellow	Plates, colourless	Plates, colourless
θ range (°)	3.04–25.01 ^a (27.45)	2.57-27.50	2.60-31.02
Data collection			
Diffractometer	Nonius KappaCCD	Nonius KappaCCD	Nonius KappaCCD
Data collection method	$\phi \operatorname{scans}(\kappa=0) + \omega \operatorname{scans}$	$\phi \operatorname{scans}(\kappa=0) + \omega \operatorname{scans}$	$\phi \operatorname{scans}(\kappa=0) + \omega \operatorname{scans}$
Limiting indices	$0 \le h \le 24, -17 \le k \le 17, \\ -17 \le 1 \le 17$	$0 \le h \le 21, 0 \le k \le 22, -23 \le 1 \le 23$	$0 \le h \le 23, 0 \le k \le 25, -25 \le 1 \le 25$
Reflections collected, unique, <i>R</i> (int)	14494, 5806 ^a (7536, 0.0595)	11181, 5914, 0.0390	15875, 7942, 0.0485
Reflections observed $[I > 2\sigma(I)]$	5178	3895	5397
Completeness (%) to θ_{max}	99.3 ^a	99.7	99.6
Absorption correction	Multi-scan	Multi-scan	Multi-scan
T_{\min}, T_{\max}	0.7760, 0.8825	0.8999, 0.9869	0.8968, 0.9865
Refinement			
Refinement method	On F^2	On F^2	On F^2
Data/restraints/parameters	5806/1/414	5914/2/346	7942/0/342
Goodness-of-fit parameter	S = 1.164	1.054	1.025
Final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0605, wR2 = 0.1112	R1 = 0.0696, wR2 = 0.1644	R1 = 0.0518, wR2 = 0.1193
R indices (all data)	R1 = 0.0746, wR2 = 0.1198	R1 = 0.1150, wR2 = 0.1893	R1 = 0.0890, wR2 = 0.1349
Weighting scheme w: A, B	0.0619, 2.7630	0.0739, 4.5806	0.0566, 2.5100
Absolute structure parameter	0.003(14)	_	_
Extinction method, coefficient	SHELXL, 0.0042(5)	_	_
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e}{\rm \AA}^{-3})$	0.545, -0.270	0.563, -0.456	0.362, -0.670

 $w = 1/[\sigma^2(\text{Fo}^2) + (\text{AP})^2 + \text{BP}]$ where $P = (\text{Fo}^2 + 2\text{Fc}^2)/3$.

^a Theta range diminished from 27.45° (7536 unique reflections) to 25.01° (5806 reflections) because of relatively high value of $K=Mean(Fo^2)/Mean(Fc^2)$ [7].

Download English Version:

https://daneshyari.com/en/article/1411256

Download Persian Version:

https://daneshyari.com/article/1411256

Daneshyari.com