Contents lists available at ScienceDirect

Journal of Molecular Structure

journal homepage: www.elsevier.com/locate/molstruc

Cyclic oxaalkyl diamide of *o*-phthalic acid as a new macrocyclic ligand for complexation of Li^+ cation

Adam Huczyński, Małgorzata Ratajczak-Sitarz, Andrzej Katrusiak, Bogumil Brzezinski*

Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznan, Poland

ARTICLE INFO

Article history: Received 19 March 2009 Received in revised form 15 April 2009 Accepted 17 April 2009 Available online 3 May 2009

Keywords: Cyclic amido-ethers Lithium cation complex Ionophores Crystal structure Cyclic diamide

ABSTRACT

Cyclic diamide of *o*-phthalic acid (CPhDA) was synthesised in the reaction between phtalic anhydride and 1,2-bis(2-aminoethoxy)ethane in high dilution conditions and its ability to form the 1:1 and 2:1 complexes with Li⁺ cations was detected by ESI mass spectrometry. The 1:1 complex was obtained in the solid state and studied by X-ray diffraction, FT-IR, NMR and PM5 semiempirical methods. The structure of 1:1 complex was also studied in acetonitrile. It was found that the structures of 1:1 complex are different in the solid and in solution.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Macrocycles are possibly the widest used family of host compounds in supramolecular chemistry [1]. Among different areas of supramolecular chemistry, the synthesis of cyclic diamides has been a subject of intensive studies because of their wide applications in chemistry, biology, molecular recognition, medicine, industry and agriculture [1,2]. They are highly capable of selective and effective complexation of various transition and heavy metal cations as well as some neutral molecules and anions [3]. Macrocyclic diamides are valuable intermediates for the preparation of aza-crown compounds and more complicated ligands such as cryptands [4]. Some diamide-containing macrocycles have been used as new catalysts [5] or molecular receptors for molecular recognition of biologically interacting substrates including anti-HIV active drugs [6]. Designing of an efficient ionophore for lithium cation presents a considerable problem because of its relatively small ionic diameter with the respect to the other alkali metal cations [7]. We report here the ionophoric properties of cyclic benzosubstituted diamide (CPhDA) (Scheme 1) toward lithium cations.

2. Experimental

1,2-Bis(2-aminoethoxy)ethane, *o*-phthalic acid anhydride and phthaloyl dichloride were purchased from Sigma–Aldrich. The lithium perchlorate was commercial product of Sigma and was used

* Corresponding author. Tel.: +48 61 8291330.

E-mail address: bbrzez@amu.edu.pl (B. Brzezinski).

without any further purification. CD_3CN and CH_3CN spectral-grade solvents were stored over 3 Å molecular sieves for several days. All manipulations with the substances were performed in a carefully dried and CO_2 -free glove box.

2.1. Synthesis of CPhDA

A solution of $(1.48 \text{ g}, 1.0 \times 10^{-2} \text{ mol})$ 1,2-bis(2-aminoethoxy)ethane, $(1.48 \text{ g}, 1.0 \times 10^{-2} \text{ mol})$ phthalic acid anhydride in the 300 ml of anhydrous toluene was stirred under reflux for 24 h under argon atmosphere. After this time the solvent was evaporated under reduced pressure and the solid residue was washed with chloroform (3 × 10 ml). The chloroform solution was combined and evaporated under reduced pressure to dryness. The solid residue was purified by chromatography (CHCl₃/CH₃OH, 5:1) on silica gel (Fluka, type 60), yield – 420 mg, 15.1%. (See Scheme 1, method a.).

2.2. Synthesis of CPhDA-LiClO₄-H₂O (1:1:1) complex

The appropriate lithium perchlorate (1.0 mmol) in warm acetonitrile (5 cm^3) was added to a solution of CPhDA (1.0 mmol) in warm acetonitrile (2 cm^3) . Crystals suitable for X-ray crystallography were grown by slow crystallization from acetone solutions.

2.3. X-ray crystal structure analysis

The X-ray diffraction measurements were carried out on a Kuma KM-4 CCD diffractometer at 293 K. The structure was

^{0022-2860/\$ -} see front matter @ 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.molstruc.2009.04.032

Scheme 1. Synthesis of cyclic diamide of *o*-phthalic acid (CPhDA). Reagent and conditions: (a) *o*-phthalic anhydride (1) (1.0 equiv), 1,2-bis(2-aminoethoxy)ethane (1.0 equiv), toluene, 100 °C, 24 h; (b) *o*-phthalic anhydride (1) (1.0 equiv), 1,2-bis(2-aminoethoxy)ethane (1.0 equiv), lithium perchlorate (2.0 equiv), acetonitrile, 80 °C, 24 h.

solved by direct method with SHELXS-97 [8] and refined with SHELXL-97 [9]. All on-hydrogen atoms were anisotropically refined. Two H-atoms at O(W1) were located from the difference Fourier maps and refined with isotropic temperature factors. All other H-atoms were calculated from the molecular geometry, and their U_{iso} 's were related to the thermal vibrations of their carriers. The crystallographic-information-file (CIF) has been deposited with Cambridge Crystallographic Database Centre as a supplementary Publication No. CCDC 714396. A copy can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, fax: +44(12) 23336 033, e-mail: deposit@ccdc.cam.ac.uk.

Crystals of CPhDA–LiClO₄–H₂O were obtained by recrystallisation from acetone: M = 384.69, monoclinic, space group $P_{21/c}$ (No. 14), a = 10.6095(9) Å, b = 10.6336(9) Å, c = 17.0492(14) Å, $\beta = 102.12(1)$ Å, V = 1880.6(3) Å³, Z = 4, $d_c = 1.359$ g cm⁻³, $2\theta_{max} = 48.28$, $F(0 \ 0 \ 0) = 800$. A total of 13,592 reflections were measured, 4729 unique. The final cycle of full-matrix least squares refinement was based on all observed reflections, 293 variable parameters, with factors of R = 0.067, $wR_2 = 0.145$, GOF = 0.958,

max./min. residual electron density $0.28/-0.44 \text{ e} \text{ Å}^{-3}$. The bond distances and angels are listed in Table 1 and hydrogen-bonds geometry is described in Table 2.

2.4. ESI mass spectrometry

The electrospray ionization (ESI) mass spectra were recorded on a Waters/Micromass (Manchester, UK) ZQ mass spectrometer equipped with a Harvard Apparatus syringe pump. All sample solutions were prepared in acetonitrile $(1.0 \times 10^{-5} \text{ mol dm}^{-3})$. The measurements were performed for the solutions of KTA-TBD complex. The samples were infused into the ESI source using a Harvard pump at a flow rate of 20 µl min⁻¹. The ESI source potentials were: capillary 3 kV, lens 0.5 kV, extractor 4 V. In the case of standard ESI mass spectra the cone voltage was 70 V. The source temperature was 120 °C and the dessolvation temperature was 300 °C. Nitrogen was used as the nebulizing and dessolvation gas at flow-rates of 100 and 300 1 h⁻¹, respectively. Mass spectra were acquired in the positive ion detection mode with unit mass resolution at a step of 1 *m/z* unit.

Table 1

Selected bond lengths (Å) bond angles (°) and torsion angles (°) determined from X-ray measurement of CPhDA-LiClO₄-H₂O crystal.

Bond lengths (Å)		Bond angles (°)		Torsion angles (°)	
O(1)-C(7)	1.2407(18)	C(10)-O(2)-C(9)	112.88(13)	C(6)-C(1)-C(2)-C(3)	-0.4(3)
O(2)-C(10)	1.432(2)	C(12)-O(3)-C(11)	113.42(14)	C(14)-C(1)-C(2)-C(3)	-175.58(16)
O(2)-C(9)	1.436(2)	C(7)-N(1)-C(8)	123.12(13)	C(4)-C(5)-C(6)-C(7)	-178.39(15)
O(3)-C(12)	1.438(2)	C(14)-N(2)-C(13)	124.84(14)	C(2)-C(1)-C(6)-C(5)	0.7(2)
O(3)-C(11)	1.450(2)	C(5)-C(6)-C(7)	115.68(14)	C(14)-C(1)-C(6)-C(7)	-6.4(2)
O(4) - C(14)	1.2422(19)	C(1)-C(6)-C(7)	124.91(13)	Li(1)-O(1)-C(7)-N(1)	-19.5(4)
N(1)-C(7)	1.333(2)	O(1)-C(7)-N(1)	123.06(15)	Li(1)-O(1)-C(7)-C(6)	156.1(3)
N(1)-C(8)	1.467(2)	N(1)-C(7)-C(6)	116.74(13)	C(8)-N(1)-C(7)-O(1)	0.4(2)
N(2)-C(14)	1.344(2)	N(1)-C(8)-C(9)	110.75(13)	C(8)-N(1)-C(7)-C(6)	-175.29(14)
N(2)-C(13)	1.475(2)	O(2)-C(9)-C(8)	107.81(13)	C(5)-C(6)-C(7)-O(1)	-56.6(2)
C(1) - C(2)	1.402(2)	O(2)-C(10)-C(11)	107.72(14)	C(1)-C(6)-C(7)-O(1)	125.41(17)
C(1) - C(6)	1.408(2)	O(3)-C(11)-C(10)	112.42(15)	C(5)-C(6)-C(7)-N(1)	119.22(16)
C(1) - C(14)	1.504(2)	O(3)-C(12)-C(13)	109.30(15)	C(1)-C(6)-C(7)-N(1)	-58.7(2)
C(2)-C(3)	1.395(3)	N(2)-C(13)-C(12)	114.27(15)	C(7)-N(1)-C(8)-C(9)	-159.31(15)
C(3) - C(4)	1.378(3)	O(4)-C(14)-N(2)	123.59(15)	C(10)-O(2)-C(9)-C(8)	-157.28(15)
C(4) - C(5)	1.388(3)	N(2)-C(14)-C(1)	114.90(14)	N(1)-C(8)-C(9)-O(2)	9.86(18)
C(5) - C(6)	1.403(2)	O(44)-Cl(1)-O(33)	119(3)	C(9)-O(2)-C(10)-C(11)	170.99(15)
C(6) - C(7)	1.511(2)	O(44)-Cl(1)-O(22)	86.3(18)	C(12)-O(3)-C(11)-C(10)	-80.8(2)
C(8) - C(9)	1.512(2)	O(33)-Cl(1)-O(22)	116(2)	O(2)-C(10)-C(11)-O(3)	-58.9(2)
C(10)-C(11)	1.500(3)	O(1CL)-Cl(1)-O(2CL)	106.4(12)	C(11)-O(3)-C(12)-C(13)	176.10(14)
C(12)-C(13)	1.509(3)	O(44)-Cl(1)-O(11)	118.1(15)	C(14)-N(2)-C(13)-C(12)	86.7(2)
Cl(1)-O(44)	1.143(18)	O(33)-Cl(1)-O(11)	97.6(17)	O(3)-C(12)-C(13)-N(2)	-83.67(19)
Cl(1)-O(33)	1.26(2)	O(22)-Cl(1)-O(11)	122.0(12)	C(13)-N(2)-C(14)-O(4)	-2.6(3)
Cl(1)-O(1CL)	1.389(11)	O(1CL)-Cl(1)-O(4CL)	104.2(6)	C(13)-N(2)-C(14)-C(1)	174.11(16)
Cl(1)-O(22)	1.417(15)	O(2CL)-Cl(1)-O(4CL)	119.6(10)	C(2)-C(1)-C(14)-O(4)	127.64(17)
Cl(1)-O(2CL)	1.422(8)	O(1CL)-Cl(1)-O(3CL)	116.7(16)	C(6)-C(1)-C(14)-O(4)	-47.4(2)
Cl(1)-O(11)	1.47(2)	O(2CL)-Cl(1)-O(3CL)	106.8(5)	C(2)-C(1)-C(14)-N(2)	-49.1(2)
Cl(1)-O(4CL)	1.495(10)	O(4CL)-Cl(1)-O(3CL)	103.8(4)	C(6)-C(1)-C(14)-N(2)	135.81(16)
Cl(1)-O(3CL)	1.498(11)	HW1-OW1-HW2	100(4)	C(7)-O(1)-Li(1)-OW1	-68.3(4)

Download English Version:

https://daneshyari.com/en/article/1411411

Download Persian Version:

https://daneshyari.com/article/1411411

Daneshyari.com