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A core question in cognitive science concerns how humans acquire and repre-
sent knowledge about their environments. To this end, quantitative theories of
learning processes have been formalized in an attempt to explain and predict
changes in brain and behavior. We connect here statistical learning approaches
in cognitive science, which are rooted in the sensitivity of learners to local
distributional regularities, and network science approaches to characterizing
global patterns and their emergent properties. We focus on innovative work that
describes how learning is influenced by the topological properties underlying
sensory input. The confluence of these theoretical approaches and this recent
empirical evidence motivate the importance of scaling-up quantitative
approaches to learning at both the behavioral and neural levels.

Relating Two Approaches
From the earliest stages of development, the human brain is tasked with the monumental feat of
building and efficiently accessing an enormously complex constellation of knowledge. Even the
most mundane interactions with our environment require a rich understanding of its component
parts as well as of the scales at which they relate to form a larger system. Thus, knowledge can
be represented at multiple levels, ranging from local associations between elements to complex
networks built from those local associations. Until recently a dominant approach to human
learning has focused on micro-level patterns, often the pairwise relationships between the
constituents of sensory input. In the present review we turn our attention to exciting advances in
the application of network science to the study of broader architectural patterns to which human
learners are sensitive.

One source of compelling support for locally driven learning derives from demonstrations that
infants can extract words from continuous speech based on the conditional probabilities
between syllables [1]. Ongoing work continues to elucidate the power of statistical relationships
exploited by both infants and adults, making ‘statistical learning’ one of the most robust and
deeply explored phenomena in the field of cognitive science [2–5]. An underlying rationale has
been that local associations, such as co-occurrence frequency or the conditional probabilities
that facilitate word segmentation, assist in directing the learner to component parts of a cognitive
system. Knowledge of these component parts not only opens up other informative cues to
structure ([6] for review) but also spurs the development of sophisticated representations of
dependencies between higher-order units (e.g., [7]). While evidence has thus supported a key
role for local computations in complex learning environments, intriguing counter-evidence

Trends
Descriptive analytical approaches indi-
cate that diverse facets of the environ-
ment adhere to a complex network
structure.

Recent advances offer insight into how
learners might acquire and access net-
work representations. Specifically,
higher-order topological properties of
networks have been shown to facilitate
learning.

Emerging neuroimaging techniques
construe the brain itself as complex sys-
tem, revealing how network dynamics
support learning.

We suggest that network science
approaches are compatible with statis-
tical learning approaches to knowledge
acquisition. That is, local statistical reg-
ularities extracted from sensory input
form the building blocks of complex net-
work structures. Broader architectural
properties of network structures might
then explain learning effects beyond
sensitivity to local statistical information.
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suggests that statistical bootstrapping mechanisms may be overwhelmed by real-world cogni-
tive systems (e.g., natural language [8]; but see [9,10]). Because the issues of scalability in
statistical learning are as yet unresolved, we stress here the value of also considering the global
network structure that emerges from pairwise relationships between constituent elements in the
environment.

Under a complex systems approach, the network structure of a system is studied by determin-
ing its component elements (nodes, see Glossary) as well as the relational links between them
(edges). Once this scaffolding is constructed, it is possible to probe large-scale topological and
dynamical properties over and above those present in the pairwise relations between elements.
In fact, one defining characteristic of complex systems is that the explanatory power of their
global architecture exceeds that of their local architecture [11]. Network science is increasingly
applied to answer questions about the structure of immensely complex information: how might
we represent or navigate spatial maps [12,13], object features [14], semantic concepts [15–17],
and grammatical relationships [18]? It has also been effectively harnessed by cognitive neuro-
scientists to examine how structural and functional connections in the brain give rise to various
cognitive capacities [19–25]. Despite these many advances, the integration of network science
and cognitive science has tended to focus either on (i) the description of networks derived from
the sensory world, or (ii) the mechanisms by which the human brain engages with the sensory
world, with little communication between these two areas. We focus here on a related but
distinct line of questioning that may begin to bridge these branches of cognitive science. Namely,
how can topological properties of sensory input drive the process of human learning?

In the subsequent sections we offer examples of complex networks present in our everyday
environment, focusing particularly on descriptive analyses of language networks. Next, we detail
a growing body of experimental work that links topological properties of networks to knowledge
acquisition. We then discuss the intersection between distributional approaches to learning,
which offer insight into the acquisition of local statistical patterns, and network-based
approaches to learning, which offer complementary insight into the acquisition of higher-order
patterns. Finally, we describe cutting-edge neuroimaging work that construes the brain itself as a
dynamical complex system, highlighting the importance of bridging internal network models of
brain function with higher-order patterns in external networks.

Complex Networks Are Pervasive
Complex systems approaches rest on the premise, not tied to any particular domain, that the
world can be decomposed into parts, and that those parts interact with one another in
meaningful ways. Therefore, diverse facets of human knowledge can and have been studied
under the lens of network science. Cognitive systems are generally thought to adhere to a
complex network structure, a type of graph structure that is neither truly random nor truly regular
[26]. Random graphs are collections of nodes that are linked by edges selected at random from
a uniform distribution of all possible connections. Regular graphs are collections of nodes that
share connections to the same number of neighbors, thus having equivalent degree. Falling
between these two extremes (Figure 1), complex networks display their own set of unique
properties including, but not limited to: community structure (nodes may pattern in densely
connected groupings), skewed degree distribution (a few nodes may be densely connected,
forming ‘hubs’), and distinctive mixing patterns (nodes may be more likely to share a link with
other nodes that have either similar or dissimilar properties). As we will explore in detail in the
following section, human learners are adept at exploiting topological properties such as these as
they extract structure from sensory input.

In principle, network analysis of cognitive systems requires only that a given dataset be parsed
into discrete elements (nodes) and that some relationships between those elements be specified

Glossary
Assortative mixing: a measure of
whether nodes with similar properties
(e.g., high degree) are more likely to
share an edge.
Clustering coefficient: the extent to
which adjacent neighbors of a given
node are also connected to one
another. This measure may be
calculated for an individual node or
expressed as an average across a
network.
Community structure: a graph
property wherein nodes are densely
connected in clusters that in turn
share only weak connections with
one another. Communities are
commonly also referred to as
modules.
Coreness: a measure of how deeply
a given node is embedded in a
network. A node has high coreness if
it is retained in the network after
recursively pruning nodes with low
degree.
Degree: the number of edges
incident to a given node. A node has
high degree if it is densely connected
to many other nodes and low degree
if it is only sparsely connected.
Complex networks may have skewed
degree distributions such that certain
nodes are far more richly connected
than others, forming hubs.
Dyad: a pair of nodes sharing an
edge.
Edges: links between the vertices in
a network. If an edge is directed,
then the order in which nodes are
connected is meaningful (e.g.,
temporal order is important for a
syntactic network, but not for a
phonological network).
Nodes: vertices, or connection
points, which comprise a network.
Shortest characteristic path
length: a measure of network
efficiency; it is, on average, the least
possible distance between every pair
of nodes when traversing along the
edges of a network.
Small-world network: a family of
networks defined by short
characteristic path length and a high
degree of clustering.
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