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This Opinion article considers the implications for functional anatomy of how we
represent temporal structure in our exchanges with the world. It offers a theo-
retical treatment that tries to make sense of the architectural principles seen in
mammalian brains. Specifically, it considers a factorisation between represen-
tations of temporal succession and representations of content or, heuristically, a
segregation into when and what. This segregation may explain the central role of
the hippocampus in neuronal hierarchies while providing a tentative explanation
for recent observations of how ordinal sequences are encoded. The implications
for neuroanatomy and physiology may have something important to say about
how self-organised cell assembly sequences enable the brain to exhibit pur-
poseful behaviour that transcends the here and now.

The Principles of Functional Anatomy

There are certain architectural principles of neuroanatomy that seem amenable to explanation from
a purely theoretical perspective. These range from the existence of axonal processes that form
neuronal connections to macroscopic organisational principles such as functional segregation [1].
A key example is the segregation of dorsal and ventral streams into what and where streams [2].
How might these architectural features be explained from a theoretical perspective? In what
follows, we appeal to active inference and the Bayesian brain hypothesis [3,4] to suggest that
functional segregation emerges from statistical structure in the environment. We then consider the
implications of this argument for a fundamental aspect of this structure; namely, the trajectories or
ordered sequences of states that we encounter [5]. Our conclusion is that there should be a
functional segregation between what and when-a conclusion that seems to explain numerous
anatomical and physiological observations, particularly in the hippocampal system.

Good Enough Brains and Good Enough Models

A key theoretical development in neurobiology is the appreciation of the brain as a predictive
organ generating predictions of its actions and sensations [4,6-9]. These predictions rest on an
internal or generative model (see Glossary) of how sensory input unfolds. One can understand
much of neuronal dynamics and synaptic plasticity as an optimisation of (Bayesian) model
evidence as scored by proxies like free energy and prediction errors [9-11]. If one subscribes to
this normative theory, the brain must be a good (enough) model of its environment, where
recurring sequences of events are the rule. This idea dates back to notions of good regulators in
self-organisation and cybernetics [12,13]. In brief, the good regulator theorem states that any
system that can control its environment must be a good model of that environment. So what
constitutes a good enough model?

Mathematically, a good enough model is simply a model that has sufficient evidence in light of the

(sensory) data it has to explain. Evidence is the probability of sensory samples under a model of
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Recent studies of hippocampal
responses suggest that they have an
intrinsic dynamics that may comple-
ment (or nuance) spatiotemporal
encoding, particularly the encoding of
trajectories through space and time
and inherent place-cell activity.

Predictive coding and the Bayesian
brain now predominate as explana-
tions for much of cognitive neu-
roscience and functional anatomy in
the brain and have clear relevance for
the encoding of trajectories through
various state spaces.

Recent attempts to understand the form
of ordinal or sequential processing in
the brain (e.g., navigation, language)
emphasise prediction and may be fun-
damentally informed by recent empirical
findings from the study of hippocampal
(and neocortical) responses.
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Box 1. Approximate Bayesian Inference

Bayesian inference refers to optimising beliefs about a model or its hidden states (s) in the light of outcomes (o) or
evidence. Formally, this can be expressed as minimising a variational free energy bound on Bayesian model evidence [91]
with respect to beliefs about hidden states encoded by a probability density Q(s) (with expectation E[Q(S)] = s).
F(o,s) = D[Q(s)||P(so)] — InP(0) > InP(o)

N————/— N—_—— N——

relative entropy log evidence

= D[Q(s)[|P(s)] - Ea[InP(0]s)]
—_———— —

accuracy

log evidence

complexity

Here, the model is specified by a joint distribution over outcomes and their causes or hidden states: P(o, s) = P(0|s)P(s).
The first expression for free energy shows that when free energy is minimised, the relative entropy or Kullback-Leibler (KL)
divergence attains its minimum (zero) and free energy becomes the negative logarithm of model evidence. In other words,
when free energy is minimised, the approximate posterior beliefs become the true posterior beliefs (i.e., the distribution of
hidden states given outcomes) and free energy becomes negative log evidence.

Another way of conceptualising free energy is in terms of accuracy and complexity, as shown in the second equality. This
equality shows that minimising free energy minimises complexity. Here, complexity is the KL divergence between posterior
beliefs and prior beliefs (prior to any outcomes). In other words, complexity reflects the degrees of freedom-above and
beyond prior beliefs—needed to provide an accurate account of observed data. It follows that when one is absolutely certain
about the hidden states causing data, the complexity increases with the number of hidden states entertained by the model.

The imperative to minimise complexity is known as Occam's principle and is the basis of approximations to model
evidence provided by the Akaike and Bayesian information criteria [92]. The role of complexity will become important
below, when we consider models with a large number of states encoding joint distributions over two factors relative to
parsimonious models (with greater model evidence) that encode just the factors or marginal densities (Box 2). In terms of
the equations above, this distinction can be expressed as the mean field approximation Q(s) = Q(s""®®)Q(s""a).

how those samples were generated (Box 1). In this sense, any brain can be viewed as (self-)
organising itself to maximise model evidence. Here we are implicitly appealing to the Bayesian brain
hypothesis [14] while gently sidestepping big questions about its utility and falsifiability (e.g.,
[15,16]). In what follows, we assume that the imperative to maximise model evidence is a (possibly
tautological) truism [17] and consider the implications for functional anatomy. Our focus is on the
notion of a mean field approximation that is an integral part of approximate Bayesian
inference.

A key conclusion-that follows from the Bayesian brain—is that the structure of a good brain will
recapitulate the (statistical) structure of how sensations are caused; in short, the model resides in
the structure of the brain. For example, why does the brain have extensive connections while the
liver seems to operate perfectly happily without them? An obvious answer is that the brain has to
model sparse dependences induced by regularities in the world. In other words, our sensory inputs
are generated by a small number of underlying causes that act on each other (usually at a distance)
inalawful and structured way. This lawful structure requires a relatively sparse dependency among
the causes, such as gravity causing things to fall or visual objects causing sensory impressions. In
short, the probabilistic structure of our world should, in principle, provide a sufficient explanation for
the structure and fabric of connections of any brain that is trying to model that world. For example,
our sensations are generated in a way that conforms to logarithmic rules (e.g., Weber's law). These
statistical rules may then be transcribed into the lognormal statistics of synaptic physiology (implicit
in divisive normalisation [18]) or the connectome that supports this physiology [19,20]. Simply
noting that causal regularities in the world are transcribed into neuronal architectures may sound
self-evident. However, this conjecture does not get to the heart of principles such as functional
segregation. To understand how maximising model evidence leads to functional segregation, we
have to consider the constraints under which evidence is optimised. This brings us to the notion of
approximate Bayesian inference (Box 1).

Good Enough Brains and Approximate Bayesian Inference
Any system or procedure that optimises (maximises) Bayesian model evidence can be regarded
as implementing Bayesian inference. However, exact Bayesian inference is generally impossible
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Glossary of Bayesian terms

Approximate Bayesian inference:
Bayesian belief updating in which
approximate posterior distributions
are optimised by minimising
variational free energy, ensuring that
the approximate posterior
convergences to the true posterior.
Bayesian belief updating: the
combination of prior beliefs about the
causes of an observation and the
likelihood of that observation
producing a posterior belief about its
hidden causes. This updating
conforms to Bayes’ rule.

Bayesian model evidence: this is
the probability that some
observations were generated by a
model. It is also known as the
marginal or integrated likelihood
because it does not depend upon
the hidden causes.

Complexity: the difference or
divergence between prior and
posterior beliefs. The complexity of a
model reflects the change in prior
beliefs produced by Bayesian belief
updating (also known as Bayesian
surprise).

Expectation: the mean or average
(the first-order moment of a
probability distribution).
Factorisation: decomposition of a
quantity into the product of factors
such that multiplying the factors
reproduces the original quantity.
Generative model: a probabilistic
specification of the dependencies
among causes and consequences;
usually specified in terms of a prior
belief and the likelihood of
observations, given their causes.
Hidden causes or states: the
unobserved (including fictive) causes
of observed data. They are hidden
because they are random variables
that can only be inferred from
observations.

Likelihood: the probability of an
observation under a generative
model, given its causes.

Marginal: a marginal probability
distribution of a joint distribution over
random variables is obtained by
marginalising or averaging over all of
the variables apart from the variable
of interest.

Mean field approximation:
approximating a joint distribution over
two or more random variables with
the product of their marginal
distributions.

Posterior beliefs: a probability
distribution over the hidden causes of
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