

Letter to the Editor

Single step preparation of meso-porous and reduced graphene oxide by gamma-ray irradiation in gaseous phase

Ludovic F. Dumée ^{a,b,*}, Chunfang Feng ^a, Li He ^a, Zhifeng Yi ^a, Fengshua She ^a, Zheng Peng ^a, Weimin Gao ^a, Connie Banos ^c, Justin B. Davies ^c, Chi Huynh ^d, Stephen Hawkins ^d, Mikel C. Duke ^b, Stephen Gray ^b, Peter D. Hodgson ^a, Lingxue Kong ^a

^a Institute for Frontier Materials, Deakin University, Pigdons Road, 3216 Waurn Ponds, Victoria, Australia

^b Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University, Hoppers Lane, 3030 Werribee, Victoria, Australia

^c Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights 2234, New South Wales, Australia ^d CSIRO, Division of Materials Science and Engineering, Private Bag 10, 3166 Clayton, Victoria, Australia

ARTICLE INFO

Article history: Received 21 August 2013 Accepted 28 December 2013 Available online 8 January 2014

ABSTRACT

A facile and highly efficient route to produce simultaneously porous and reduced graphene oxide by gamma ray irradiation in hydrogen is here demonstrated. Narrowly distributed nano-scale pores (average size of ~3 nm and surface density >44,900 pore μ m⁻²) were generated across 10 μ m thick graphene oxide bucky-papers at a total irradiation dose of 500 kGy. The graphene oxide sheet reduction was confirmed to occur homogeneously across the structures by Fourier transform infrared spectroscopy and Raman analysis. This one-step, catalyst-free, high penetration and through-put technique, offers great promises potential for the mass production of reduced graphene oxide from cheap graphene oxide. © 2014 Elsevier Ltd. All rights reserved.

The fabrication of graphene, a material made of twodimensional stacked sheets of sp2-hybridized carbon atoms, is a highly dynamic field in materials science. Graphene has been previously prepared by chemical vapor deposition, mechanical exfoliation or thermal oxidation of graphite, and thermo-chemical reduction of graphene oxide (GO). Novel processing routes for altering the morphology of graphene sheets have attracted both theoretical and experimental interest as a result of its unique properties and their potential translation into engineering applications. Processes to produce porous graphene, where nano-pores are generated in the plane of graphene sheets, have especially attracted increasing attention for their potential applications in sensing, energy storage, membrane separation, biological sequencing, composite materials and nano-electronics [1–3]. The size of the pores generated across graphene sheets may vary from single atomic openings to nano-scale pores, opening the route to fabrication of extremely porous, thermally and electrically conductive meta-materials of high surface area. Recently, 2D poly(phenylene), a porous graphene with single-atom-wide pores and sub-nano-meter periodicity, was successfully synthesized by self-assembly of alkyl substi-

^{*} Corresponding author at: Institute for Frontier Materials, Deakin University, Pigdons Road, 3216 Waurn Ponds, Victoria, Australia. Fax: +61 352271103.

E-mail address: ludovic.dumee@deakin.edu.au (L.F. Dumée). 0008-6223/\$ - see front matter © 2014 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.carbon.2013.12.094

tuted dendrimers, resulting in pristine graphene sheets with a theoretical pore width of ~2.48 Å [4]. Electron or ion beam irradiation also introduced high density arrays of pores in the range of 2–40 nm across graphene sheets, despite local oxidation damage around the pores [5]. Steam and chemical etching also led to the facile perforation of graphene or GO, and materials with broad pore size distributions and enhanced specific surface area [6,7]. Despite being highly innovative, these techniques either offer limited opportunity for up-scaling and mass production, or lead to highly oxidized and damaged porous graphene structures requiring further post-treatment to restore the graphene properties.

Here we demonstrate a highly novel and unique approach to simultaneously reduce and perforate a high density network of pre-synthesized graphene oxide to produce high pore density porous graphene sheets with narrow pore size distribution by gamma-ray (γ -ray) irradiation. These modifications were performed solely with γ -ray irradiation, without introducing any chemical or catalyst precursors, rendering a process with no chemical requirements or waste streams. Although radiation induced modifications such as the exposure of carbon nanotubes (CNTs) to soft X-rays in air were demonstrated to produce massive surface oxidation and functionalization a dozen of micrometers deep into CNT bucky-papers (BPs) [10], CNTs were previously shown to be highly resistant to γ -rays (up to 11.7 MGy in air) [8]. Functional groups, such as carbonyl or carboxylic moieties present on graphene surfaces facilitate functionalization and decoration reactions, and routes to produce high surface densities of chemical groups were consequently investigated [9].Here, graphene oxide BPs formed by vacuum filtration of GO [10] were irradiated for the first time in pure gaseous phase hydrogen with γ -rays generated from a cobalt-60 source for a range of doses generating nano-scale pores.

Although the morphology of the irradiated GO BPs were shown to be largely un-affected by the irradiation at low total dose, up to 100 kGy, high density pores were formed at 500 kGy across the GO sheets (Transmission Electron Micrographs (TEM) – Fig. 1). The pore distribution was found to be narrow (average slightly smaller than 3 nm, standard deviation of ± 0.72 nm) while the pore coverage density was up to 42,924 pores μ m⁻², corresponding to an approximate surface porosity of 33.5% which is the largest GO surface porosity reported to date [2–5] (Figs. 2A and B, 3A and S.I.). The pore distribution was confirmed by Small Angle X-ray Scattering (SAXS) analysis of the 500 kGy sample where a clear a broad Guinier knee was found at 0.05 Å⁻¹, corresponding to an average pore size of ~4.25 nm (Fig. 3B and C – see S.I.). In addition,

Fig. 1 – Transmission Electron Micrographs (TEMs) of (A, B) pristine GO sheets (C, D) 100 and (E, F) 500 kGy GO sheets; the samples were dispersed in water prior to be filtered onto a carbon lacey TEM grid; tests were performed at 200 kV on a JEOL JEM-2100 (Japan) under high vacuum. Pores were found on all the examined 500 kGy irradiated GO sheets.

Download English Version:

https://daneshyari.com/en/article/1413973

Download Persian Version:

https://daneshyari.com/article/1413973

Daneshyari.com