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The visual system transforms complex inputs into ro-
bust and parsimonious neural codes that efficiently
guide behavior. Because neural communication is sto-
chastic, the amount of encoded visual information nec-
essarily decreases with each synapse. This constraint
requires that sensory signals are processed in a manner
that protects information about relevant stimuli from
degradation. Such selective processing – or selective
attention – is implemented via several mechanisms,
including neural gain and changes in tuning properties.
However, examining each of these effects in isolation
obscures their joint impact on the fidelity of stimulus
feature representations by large-scale population codes.
Instead, large-scale activity patterns can be used to
reconstruct representations of relevant and irrelevant
stimuli, thereby providing a holistic understanding
about how neuron-level modulations collectively impact
stimulus encoding.

Visual attention and information processing in visual
cortex
Complex visual scenes contain a massive amount of infor-
mation. To support fast and accurate processing, behav-
iorally-relevant information should be prioritized over
behaviorally-irrelevant information (Figure 1). For exam-
ple, when approaching a busy intersection while driving it
is crucial to detect changes in your lane’s traffic-light
rather than one nearby to prevent a dangerous collision.
This capacity for selective information processing, or se-
lective visual attention, is supported by enhancing the
amount of information that is encoded about relevant
visual stimuli relative to the amount of information that
is encoded about irrelevant stimuli. Importantly, under-
standing how relevant visual stimuli are represented with
higher fidelity requires considering more than only the
impact of attention on the response properties of individual
neurons. Instead, examining activity patterns across large

neural populations can provide insights into how different
unit-level attentional modulations synergistically improve
the quality of stimulus representations in visual cortex.

In the scenario above, neurons can undergo several
types of modulation in response to the relevant light
compared to one that is irrelevant: response amplitudes
can increase (response gain), responses can become more

Review

Glossary

Bit: unit of entropy (base 2).

Decoder: algorithm whereby a feature or features about a stimulus (orienta-

tion, spatial position, stimulus identity, etc.) is/are inferred from an observed

signal (spike rate, BOLD signal). Typically, the signal is multivariate across

many neurons/voxels, but in principle a decoder can use a univariate signal.

Dynamic range: the set of response values a measurement unit can take. An

increase in the response gain of a unit will increase the range of possible

response values, and this will increase its entropy.

Encoding model: a description of how a neuron (or voxel) responds across a

set of stimuli (e.g., a spatial receptive field can be a good encoding model for

many visual neurons and voxels, see Box 2).

Entropy: a measure of uncertainty in a random process, such as a coin flip or

observation of a neuron’s spike count. A variable with a single known value will

have 0 entropy, whereas a fair coin would have >0 entropy (1 bit).

Feature space: after reconstruction using the IEM technique, data exist in

feature space, with each datapoint being defined by a vector of values

corresponding to the activation of a single feature-selective population

response (e.g., orientation, spatial position); common across all participants

and visual areas.

Inverted encoding model (IEM): when encoding models are estimated across

many measurement units, it may be possible to use all encoding models to

compute a mapping from signal space into feature space which allows

reconstruction of stimulus representations from multivariate patterns of neural

activity across the modeled measurement units (Box 2).

Multivariate: when analyses are multivariate, signals from more than one

measured unit are analyzed; utilizing information about the pattern of

responses across units rather than simplifying the data pattern by taking a

statistic over the units (e.g., mean).

Mutual information: the amount of uncertainty about a variable (e.g., state of

the environment) that can be reduced by observation of the state of another

random variable (e.g., the voxel or the neuron’s response).

Noise entropy: variability in one signal that is unrelated to changes in another

signal.

Receptive field (RF): region of the visual field which, when visually stimulated,

results in a response in a measured neuron or voxel (population RF, or pRF).

Tuning function (TF): the response of a neuron or voxel to each of several

values of a feature, such as orientation or motion direction.

Signal entropy: variability in one signal that is related to changes in another

signal.

Signal space: data as measured exist in signal space, with a dimension for each

measurement unit (fMRI voxel, EEG scalp electrode, electrocorticography

subdural surface electrode, animal single cell firing rate, or calcium signal);

cannot be directly compared across individual subjects without a potentially

suboptimal coregistration transformation.
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reliable, and receptive field properties can shift (e.g., some
neurons will shift their spatial receptive field to encompass
the attended light). Thus, neural responses associated with
attended stimuli generally have a higher signal-to-noise
ratio and are more robust compared to responses evoked by
unattended stimuli. Accordingly, the behavioral effects
associated with visual attention are thought to reflect
these relative changes in neural activity: when stimuli
are attended, participants exhibit decreased response
times, increased discrimination accuracy, and improved
spatial acuity ([1–3] for reviews).

This selective prioritization of relevant over irrelevant
stimuli follows from two related principles of information
theory [4–7] (Box 1). First, the data-processing inequality
[7] states that information is inevitably lost when sent via
noisy communication channels, and that lost information
cannot be recaptured via any amount of further processing.
Second, the channel capacity of a communication system is

determined by the amount of information that can be
transmitted and received, and by the degree to which that
information is corrupted during the process of transmis-
sion. In the brain, channel capacity is finite because there
is a fixed (albeit large) number of neurons and because
synaptic connections are stochastic such that information
cannot be transmitted with perfect fidelity. Given this
framework, different types of attention-related neural
modulations can be viewed as a concerted effort to attenu-
ate the unavoidable decay of behaviorally-relevant infor-
mation as it is passed through subsequent stages of visual
processing [8,9]. This framing also highlights the impor-
tance of understanding how attention differentially
impacts responses across neurons, and, more importantly,
how these modulations at the single-unit level interact to
support population codes that are more robust to the
information-processing limits intrinsic to the architecture
of the visual system.
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Figure 1. Attention filters behaviorally-relevant information. When viewing a complex natural scene (left), visual processing by a noisy neural system will necessarily result

in an overall loss of information. If your eyes were fixated on the center of the image, but you were directing attention to the temple nestled among the trees near the top,

information about the attended temple would be selectively preserved from degradation by noisy neural processing – such that, even at successively later stages of

computation, information about the attended location and/or features of the image is still maintained, despite substantial loss of information about unattended components

of the image (right panel).

Box 1. Information content of a neural code

Information is related to a reduction in uncertainty [4,5,7]. A code is

informative insofar as measurement of one variable (e.g., the firing

rate of a single neuron) reduces uncertainty about another variable

(e.g., feature of a stimulus). The amount of uncertainty in a random

variable (e.g., the outcome of a coin toss or the spiking output of a

cell) can be quantified by its entropy, which increases with

increasing randomness. Mutual information (MI) is a measure of

the reduction in uncertainty of one variable after knowing the state

of another variable. MI would be zero for independent variables

(e.g., two different coins), whereas MI would be high for two

variables that strongly co-vary.

If a neuron noisily responds at the same level to each feature

value, then the MI between the state of the stimulus and the state

of the neuron’s response is low because signal entropy (variability

associated with changes in the stimulus) is low and noise entropy

(variability unrelated to changes in the stimulus) is high (Figure IA).

Instead, if the neuron exhibits a Gaussian-like orientation tuning

function (TF; Figure IB,C), then MI is higher because more of the

variability in the neuron’s response is related directly to changes in

the state of the stimulus. In this latter case, if the amplitude of the

neuronal TF increases while noise remains approximately constant,

then the ratio of signal entropy to noise entropy increases,

resulting in greater MI between the neuron’s response and the

stimulus orientation. However, if the tuning width of the orienta-

tion TF changes, this could result in either an increase or decrease

in the information about the stimulus, and would be contingent

upon several factors such as the original tuning width, noise

structure, dimensionality of the stimulus, and the responses of

other neurons (Figure IF–H) [37,126–128]. For a widely-tuned

neuron, a decrease in tuning width would result in an increase in

signal entropy relative to noise entropy, increasing the information

content of the neuron about orientation. At the other extreme, for a

neuron perfectly tuned for a single stimulus value, with noisy

baseline responses to other values, a broadening in tuning would

result in greater variability associated with stimulus features, and

consequently greater information (Figure IF–H). Thus, an increase

in the amplitude of a neural response (under simple noise models)

will increase the dynamic range and entropy, whereas a change in

tuning width can either increase or decrease the information

content of a neural code.
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