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Our representation of the physical world requires judg-
ments of magnitudes, such as loudness, distance, or
time. Interestingly, magnitude estimates are often not
veridical but subject to characteristic biases. These
biases are strikingly similar across different sensory
modalities, suggesting common processing mecha-
nisms that are shared by different sensory systems.
However, the search for universal neurobiological prin-
ciples of magnitude judgments requires guidance by
formal theories. Here, we discuss a unifying Bayesian
framework for understanding biases in magnitude esti-
mation. This Bayesian perspective enables a re-interpre-
tation of a range of established psychophysical findings,
reconciles seemingly incompatible classical views on
magnitude estimation, and can guide future investiga-
tions of magnitude estimation and its neurobiological
mechanisms in health and in psychiatric diseases, such
as schizophrenia.

Theories of magnitude estimation
Our ability to judge duration, distance, or size is crucial for
a mental representation of, and interaction with, the phys-
ical world, such as building a cognitive map, performing
accurate movements, playing an instrument, or doing
sports [1,2]. It has long been known that humans show
strikingly similar behavioral signatures (and biases) in
magnitude estimation across different sensory modalities,
such as proprioception, vision, or audition [3–9]. Along
with imaging studies, the universal expression of these
behavioral effects has supported the idea of a generalized
magnitude estimation system [10–14]. However, at the
same time, each physical quantity might also have a
specialized representation that is related to the sensory
organs with which it is typically associated and the compu-
tational problems in whose treatment it has a role
[15]. Therefore, previous work has called for computational
models as a way to disentangle common and distinct
processes in magnitude representation and estimation
[16].

So far, however, attempts to model magnitude estima-
tion have often led to modality-specific or effect-specific
explanations [17]. By contrast, recently proposed Bayesian
accounts of magnitude estimation have the potential to
provide a more general explanation that covers a wide set
of behavioral characteristics and transcends any specific
modality [18–20]. This Bayesian framework suggests that
behavioral phenomena of magnitude estimation, such as
characteristic biases observed across sensory domains, are
the result of integrating noisy sensory information with
prior experience. From this perspective, estimation errors
are neither due to limitations of the sensory channels nor
result from erroneous cortical representations. Instead, on
average, they optimize behavioral outcomes by accounting
for noise and are the natural consequence of general
principles underlying perceptual inference (i.e., the deploy-
ment of a predictive model that takes the learned statistics
of the environment into account) [21]. This perspective
derives from long-standing theories of perception in gen-
eral and provides a formal foundation to examine aberra-
tions of magnitude estimation in psychiatric diseases, such
as schizophrenia [22].

In this review, we discuss how a Bayesian framework
can: (i) provide a unifying perspective that explains a
variety of behavioral features of magnitude estimation;
(ii) shed new light on classical psychophysical laws by
reconciling the work of Weber-Fechner and Stevens and
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Glossary

Discrimination task: requires binary decisions about the difference between

two consecutively or simultaneously presented stimuli (e.g., whether tone A is

louder than tone B).

Generative model: specifies a joint probability distribution of hidden states

and/or parameters and the observed data; this requires specification of

likelihood and prior.

Kalman filter: a statistical technique, which infers the current (hidden) state of a

state space model based on the previous observations. It can be used to model

an online Bayesian estimation process that is updated on a trial-by-trial basis.

Matching task: requires that the magnitude of a new stimulus is actively

adjusted to a previously experienced one. Matching tasks can be used within

the same stimulus dimension (‘within-modality matching’), such as reprodu-

cing a walked distance, or across different modalities (‘cross-modality

matching’), such as matching a number to the brightness of a light bulb.

Stevens’ power law: proposes a power law relation between physical

magnitudes and the representation by sensory systems. The power law

exponent is characteristic for the respective sensory modality.

Weber-Fechner law: proposes a logarithmic relation between physical

magnitudes and the representation by sensory systems.
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providing a re-interpretation of their laws; and finally (iii)
guide the exploration of the neurobiological underpinnings
of magnitude estimation in health and disease.

A Bayesian framework for magnitude estimation
Regardless of whether we examine the estimation of
time, distances, length, or loudness, certain behavioral
phenomena reoccur across studies (Figure 1A) [23]. The
most common ones are depicted in Figure 1B: (i) A
tendency of subjective estimates to be biased towards
the center of the distribution (regression effect); (ii) an

increase of this bias for larger sample ranges (range
effect); (iii) a linear increase in standard deviation of
estimates with mean magnitude (scalar variability); and
(iv) correlations between subsequent magnitude judg-
ments (sequential or order effects) (see Box 1 for a
detailed description). Although scalar variability seems
to be the consequence of a general logarithmic represen-
tation of magnitudes according to the Weber-Fechner
law [24] (see Box 2 and Glossary), the remaining
effects have often only been explained by modality-
specific theories [17].
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Figure 1. Overview of the behavioral signatures in magnitude estimation and their Bayesian explanation. (A) Similar behavioral characteristics observed in data from four

different magnitude estimation experiments over more than 100 years on distance estimation, turning angle estimation, time estimation, and target length of a guided

movement [18,19,103,104]. Each study used three test ranges (short, medium, and large range). Note that length estimation is plotted on logarithmic scales; therefore, there

is no characteristic curvature in the reproduction data. (B) Detailed depiction of the observed behavioral characteristics in magnitude estimation from (A). The regression

effect refers to a characteristic bias towards the center of each test range, leading to a smaller reproduced range compared to the physical test range. The range effect refers

to an increase of the regression effect for larger sample ranges. Scalar variability refers to a linear increase in standard deviation with the mean of the reproduced

magnitude. Sequential effects refer to a bias in magnitude estimates towards the recent history of stimuli experienced (see also Box 1). (C) A Bayesian framework can

explain the characteristics effects shown in (B). A prior around the center of the test distribution would bias posterior estimates towards the center of the respective test

range, causing the range and regression effect. Scalar variability predicting an increase in standard deviation with the mean of the likelihood would cause the bias to be

stronger for larger magnitudes (larger sample ranges). On all plots: the tested sampled magnitudes are on the X-axis and estimated reproduced magnitudes are on the Y-

axis. Diagonal lines reflect the location of a nonbiased, veridical magnitude estimate. Adapted from [18,19,103] (A).
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