
Approaches to cognitive modeling

Probabilistic models of cognition:
exploring representations and
inductive biases
Thomas L. Griffiths1, Nick Chater2, Charles Kemp3, Amy Perfors4 and
Joshua B. Tenenbaum5

1 Department of Psychology, University of California, Berkeley, 3210 Tolman Hall MC 1650, Berkeley CA 94720-1650, USA
2 Division of Psychology and Language Sciences, University College London, Gower Street, London WC1E 6BT, UK
3 Department of Psychology, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh PA 15213, USA
4 School of Psychology, University of Adelaide, Level 4, Hughes Building, Adelaide, SA 5005, Australia
5 Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Building 46-4015, 77 Massachusetts Avenue,

Cambridge, MA 02139, USA

Cognitive science aims to reverse-engineer the mind, and
many of the engineering challenges the mind faces
involve induction. The probabilistic approach to modeling
cognition begins by identifying ideal solutions to these
inductive problems. Mental processes are then modeled
using algorithms for approximating these solutions, and
neural processes are viewed as mechanisms for imple-
menting these algorithms, with the result being a top-
down analysis of cognition starting with the function of
cognitive processes. Typical connectionist models, by
contrast, follow a bottom-up approach, beginning with
a characterization of neural mechanisms and exploring
what macro-level functional phenomena might emerge.
We argue that the top-down approach yields greater
flexibility for exploring the representations and inductive
biases that underlie human cognition.

Strategies for studying the mind
Most approaches to modeling human cognition agree that
the mind can be studied on multiple levels. David Marr [1]
defined three such levels: a ‘computational’ level charac-
terizing the problem faced by the mind and how it can be
solved in functional terms; an ‘algorithmic’ level describing
the processes that the mind executes to produce this
solution; and a ‘hardware’ level specifying how those pro-
cesses are instantiated in the brain. Cognitive scientists
disagree over whether explanations at all levels are useful,
and on the order in which levels should be explored. Many
connectionists advocate a bottom-up or ‘mechanism-first’
strategy (see Glossary), starting by exploring the problems
that neural processes can solve. This often goes with a
philosophy of ‘emergentism’ or ‘eliminativism’: higher-
level explanations do not have independent validity but
are at best approximations to the mechanistic truth; they
describe emergent phenomena produced by lower-level
mechanisms. By contrast, probabilistic models of cognition
pursue a top-down or ‘function-first’ strategy, beginning

with abstract principles that allow agents to solve pro-
blems posed by the world – the functions that minds per-
form – and then attempting to reduce these principles to
psychological and neural processes. Understanding the
lower levels does not eliminate the need for higher-level
models, because the lower levels implement the functions
specified at higher levels.
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Glossary

Backpropagation: a gradient-descent based algorithm for estimating the

weights in a multilayer perceptron, in which each weight is adjusted based

on its contribution to the errors produced by the network.

Bottom-up/mechanism-first explanation: a form of explanation that starts by

identifying neural or psychological mechanisms believed to be responsible for

cognition, and then tries to explain behavior in those terms.

Emergentism: a scientific approach in which complex behavior is viewed as

emerging from the interaction of simple elements.

Gradient-descent learning: learning algorithms based on minimizing the error

of a system (or maximizing the likelihood of the observed data) by modifying

the parameters of the system based on the derivative of the error.

Hypothesis space: the set of hypotheses assumed by a learner, as made

explicit in Bayesian inference and potentially implicit in other learning

algorithms.

Inductive biases: factors that lead a learner to favor one hypothesis over

another that are independent of the observed data. When two hypotheses fit

the data equally well, inductive biases are the only basis for deciding between

them. In a Bayesian model, these inductive biases are expressed through the

prior distribution over hypotheses.

Inductive problem: a problem in which the observed data are not sufficient to

unambiguously identify the process that generated them. Inductive reasoning

requires going beyond the data to evaluate different hypotheses about the

generating process, while maintaining uncertainty.

Likelihood: the component of Bayes’ rule that reflects the probability of the

data given a hypothesis, p(djh). Intuitively, the likelihood expresses the extent

to which the hypothesis fits the data.

Posterior distribution: a probability distribution over hypotheses reflecting the

learner’s degree of belief in each hypothesis in light of the information

provided by the observed data. This is the outcome of applying Bayes’ rule,

p(hjd).

Prior distribution: a probability distribution over hypotheses reflecting the

learner’s degree of belief in each hypothesis before observing data, p(h). The

prior captures the inductive biases of the learner, because it is a factor that

contributes to the extent to which learners believe in hypotheses that is

independent of the observed data.

Top-down/function-first explanation: a form of explanation that starts by

considering the function that a particular aspect of cognition serves, explaining

behavior in terms of performing that function.
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Explanations at a functional level have a long history in
cognitive science. Virtually all attempts to engineer
human-like artificial intelligence, from the Logic Theory
Machine [2] to the most successful contemporary para-
digms [3], have started with computational principles
rather than hardware mechanisms. The great potential
of probabilistic models of cognition comes from the
solutions they identify to inductive problems, which play
a central role in cognitive science: Most of cognition, in-
cluding acquiring a language, a concept, or a causal model,
requires uncertain conjecture from partial or noisy infor-
mation. A probabilistic framework lets us address key
questions about these phenomena. How much information
is needed? What representations subserve the inferences
people make? What constraints on learning are necessary?
These are computational-level questions and they aremost
naturally answered by computational-level theories.

Taking a top-down approach leads probabilistic models
of cognition to explore a broad range of different assump-
tions about how people might solve inductive problems,
and what representations might be involved. Representa-
tions and inductive biases are selected by considering what
is needed to account for the functions the brain performs,
assuming only that those functions of perception, learning,
reasoning, and decision can be described as forms of prob-
abilistic inference (Figure 1). By contrast, connectionism
makes strong pre-commitments about the nature of
people’s representations and inductive biases based on a
certain view of neural mechanisms and development:
representations are graded, continuous vector spaces, lack-
ing explicit structure, and are shaped almost exclusively by
experience through gradual error-driven learning algor-
ithms. This approach rejects a long tradition of research
into knowledge representation in cognitive science,
discarding notions such as rules, grammars, and logic that

have proven useful in accounting for the functions of
higher-level cognition.

The rest of this article presents our argument for the
top-down approach, focusing on the importance of repres-
entational diversity. The next section describes how struc-
tured representations of different forms can be combined
with statistical learning and inference in probabilistic
models of cognition, using a case study in semantic cogni-
tion that has also been the focus of recent work in the
connectionist tradition [4]. We then give a broader survey,
across different domains and tasks, of how probabilistic
models have exploited a range of representations and
inductive biases to explain different aspects of cognition
that pose a challenge to accounts restricted to the limited
forms of representations and weaker inductive biases
assumed by connectionism. We emphasize breadth over
depth of coverage because our goal is to illustrate the
greater explanatory scope of probabilistic models. We then
discuss how probabilistic models of cognition should be
interpreted in terms of lower levels of analysis, a common
point of confusion in critiques of this approach, and close
with several other considerations in choosing whether to
pursue a top-down, ‘function-first’ or bottom-up, ‘mechan-
ism-first’ approach to cognitive modeling.

Knowledge representation and probabilistic models
A probabilistic model starts with a formal characterization
of an inductive problem, specifying the hypotheses under
consideration, the relation between these hypotheses and
observable data, and the prior probability of each hypoth-
esis (Box 1). Probabilistic models therefore provide a trans-
parent account of the assumptions that allow a problem to
be solved and make it easy to explore the consequences of
different assumptions. Hypotheses can take any form, from
weights in a neural network [5,6] to structured symbolic
representations, as long as they specify a probability distri-
bution over observable data. Likewise, different inductive
biases can be captured by assuming different prior distri-
butions over hypotheses. The approach makes no a priori
commitment to any class of representations or inductive
biases, but provides a framework for evaluating different
proposals.
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Figure 1. Theoretical commitments of connectionism and probabilistic models of

cognition. Based on a certain view of brain architecture and function, connectionist

models makes strong assumptions about the representations and inductive biases

to be used in explaining human cognition: representations lack explicit structure

and inductive biases are very weak. By contrast, probabilistic models explore a

larger space of possibilities, including representations of diverse forms and

degrees of structure, and inductive biases of greatly varying shapes and strength.

These possibilities include highly structured representations and inductive

constraints that have proven valuable – and arguably necessary – for explaining

many of the functions of human cognition.

Box 1. Probabilistic inference

Probability theory provides a solution to the problem of induction,

indicating how a learner should revise her degrees of belief in a set

of hypotheses in light of the information provided by observed data.

This solution is encapsulated in Bayes’ rule: if a learner considers a

set of hypotheses H that might explain observed data d, and assigns

each hypothesis h2H a probability p(h) before observing d (known

as the ‘prior’ probability), then Bayes’ rule indicates that the

probability p(hjd) assigned to h after seeing d (known as the

‘posterior’ probability) should be

pðhjdÞ ¼ pðdjhÞpðhÞ
P

h2H pðdjhÞpðhÞ (1)

where p(djh) is the ‘likelihood’, indicating the probability of observ-

ing d if h were true, and the sum in the denominator simply ensures

that the posterior probabilities sum to one. Bayes’ rule thus indicates

that the conclusions reached by the learner will be determined by

how well hypotheses cohere with prior knowledge, and how well

they explain the data.

Opinion Trends in Cognitive Sciences Vol.14 No.8

358



Download	English	Version:

https://daneshyari.com/en/article/141875

Download	Persian	Version:

https://daneshyari.com/article/141875

Daneshyari.com

https://daneshyari.com/en/article/141875
https://daneshyari.com/article/141875
https://daneshyari.com/

