Contents lists available at ScienceDirect

Biotechnology Advances

journal homepage: www.elsevier.com/locate/biotechadv

Research review paper

Medical diagnostics with mobile devices: Comparison of intrinsic and extrinsic sensing

^a Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Micro and Nanotechnology Laboratory, 208 North Wright Street, Urbana, IL, United States ^b Department of Bioengineering, University of Illinois at Urbana-Champaign, Micro and Nanotechnology Laboratory, 208 North Wright Street, Urbana, IL, United States School of Florenzing and Information Pairlenze University 27 Neuron Pael Pairlenze Original Champaign, Micro

^c School of Electronic and Information Engineering, Beihang University, 37 Xueyuan Road, Beijing, China

ARTICLE INFO

Article history: Received 1 October 2015 Received in revised form 27 February 2016 Accepted 28 February 2016 Available online 4 March 2016

Keywords: Biosensors In vitro diagnostics Mobile biosensors Point of care sensors Point of use sensors

Contents

1.	Introd	roduction												
2.	Biodet	Biodetection approaches using intrinsic sensors												
	2.1.	Measuring solid-phase assays using intensity information from the camera												
	2.2.	Measuring solid-phase assays using color information from the camera												
	2.3.	Measuring solid-phase assays using location information from the camera												
	2.4.	Measuring liquid-phase assays with the camera												
	2.5.	Smartphone-based microscopy												
	2.6.	Smartphone-based spectroscopy												
	2.7.	Label-free biosensing transducers												
3.	Biodet	ection using extrinsic sensors												
	3.1.	USB connection of sensors to a smartphone												
	3.2.	Sensor communication with a smartphone through the audio jack												
	3.3.	Sensor connection via Bluetooth® communication to a smartphone												
4.	Comm	ercially available smartphone-based diagnostics												
5.	Regula	tory challenges for mobile diagnostics												
6.	Conclusion													
Ackn	owledg	rement												

1. Introduction

Since the first successful commercial introduction of smartphones in 2004, it is estimated that 6 billion mobile phones are in use worldwide (Laksanasopin et al., 2015), with nearly 1.2 billion smartphones sold in 2014 alone (Lunden, 2015). Their combination of technologies that

303 303

ABSTRACT

We review the recent development of mobile detection instruments used for medical diagnostics, and consider the relative advantages of approaches that utilize the internal sensing capabilities of commercially available mobile communication devices (such as smartphones and tablet computers) compared to those that utilize a custom external sensor module. In this review, we focus specifically upon mobile medical diagnostic platforms that are being developed to serve the need in global health, personalized medicine, and point-of-care diagnostics. © 2016 Elsevier Inc, All rights reserved.

E-mail address: bcunning@illinois.edu (B.T. Cunningham).

¹ Co-authors contributed equally to preparation of this review.

Table 1

Electrical signal Lillehoj et al.

Readout method

Authors

Summary technologies and applications for intrinsic and extrinsic sensing approaches for smartphone-based medical diagnostics.

Electrical signal Velusamy et al. Optical density Mancuso et al.

Intrinsic m	ethods															
Label	SYTO16		SYTO16		Alexa488			Cy3		None		None		None	None	
Analyte	Microparticle, white blood cell, pathogenic		Red and white blood cell, hemoglobin		l, Nanoparticle, huma cytomegalovirus		microRNA-2		1	Eggs of soil-transmitted helminth		Porcine immunoglobulin G		β_2 microglobulin	Hepatitis B, HIV	
Source	e LED array $(\lambda = 470 \text{ nm})$		LEDs $(\lambda = \text{white, } 430, 470 \text{ nm})$		Laser diode $(\lambda = 450 \text{ r})$	<u>e</u> nm)		Laser pointer $(\lambda = 532 \text{ nm})$		Incandescent flashlight		Incandescent light bulb		Smartphone screen	Smartphone flash	
Assay form	at Capillary tub	e,	Plastic cuvette, cytometric		c coverslips		Plastic cuvet		tte l	Kato-Katz thick smear		Photonic crystal sensor		Fluidic device	Plastic cuvette	
Readout method	eadout Fluorescence microscopy method		Fluorescence/bright field microscopy, absorption		Fluorescence microscopy		oy Fl sr	Fluorescence spectroscopy		Bright field microscopy		Resonance transmission spectroscopy		Reflection dip of angle-resolved	Reflected light intensity	
Authors	Zhu et al.		Zhu et al.	Wei et al.			Yu et al.		1	Bogoch et al.		Gallegos et al.		Preechaburana et al.	Giavazzi et al.	
Sample type	Solid phase												Liquid phas	e		
Analyte	Thrombin	Salmonella	Cholesterol, total bile acid	Salmon	ella, TSH	pH for urinalysis	Urinalys (multiple analytes	is e)	Urinalysi (multiple analytes)	is e)	Malaria, tuberculosis, HI	Blood type V	PSA		Mumps, Measles, HSV	
Source	$\begin{array}{l} \text{LED} \\ (\lambda = 470 \text{ nm}) \end{array}$	LED Biochemilu-minescence Smart ($\lambda = 475 \text{ nm}$)		Smartp	hone flash	Ambient light	mbient Ambient ght		Ambient light		$\begin{array}{l} \text{LED array} \\ (\lambda = 565 \text{ nm}) \end{array}$	Ambient light	$\begin{array}{l} \text{LED} \\ (\lambda = 450 \\ \text{nm}) \end{array}$	UV lamp ($\lambda = 340 \sim 400$ nm	LED array $(\lambda = 464 \text{ nm})$	
Assay format	Paper in glass/ PDMS wells	Paper microfluidic	Paper microfluidic	Paper n	nicrofluidic	Paper test strip	Paper test strip		Paper tes	test strip Lateral flow-based RD [*] strip		Paper microfluidic	Microcapillary strip		96-well plate	
Readout method Authors	Fluorescent light intensity Petryayeva	Fluorescent light Intensity Fronczek	Biochemilu-minescence light intensity Roda et al.	Mie- Scattered light intensity Park et al.		Color change Shen et al.	Color change Hong et al.		Color change Yetisen		Spatial distance Mudanyali	Spatial distance Guan et al.	Absorption Barbosa et a	Fluorescent light intensity ıl.	Fluorescent light intensity Berg et al.	
	et al.	et al.							et al.		et al.					
Extrinsic m	ethods															
Connection	USB							Audio ja	ck		Bluetooth		WiFi			
Analyte Source	<i>pf</i> HR Powe	P2 antigen ered by smartphone	DNA from <i>Bacillus cereus</i> Powered by smartph	one	DNA from Kaposi's sarcoma herpe LED		HIV, syph svirus Powered		hilis protei 1 by smartp	tein antigens Horse Irtphone Power		h peroxidase	DNA Esche Addr	from erichia coli and Sta ressable green LEI	Staphylococcus aureus LEDs	
Assay form	t Microfluidic chip		Microfluidic chip		$(\lambda = 520 \text{ nm})$ Microfluidic cartridge			Disposable cassette			external L1-10n battery (3.7 V) Electrochemical cells cartridge			Microfluidic chip		

Quantitative optical density Laksanasopin et al. Electrical signal Salomón et al. Fluorescent light intensity Stedtfeld et al. Download English Version:

https://daneshyari.com/en/article/14206

Download Persian Version:

https://daneshyari.com/article/14206

Daneshyari.com