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Several plasminogen activators (PAs) have been found effective in treating different thromboembolic diseases.
However, administration of conventional thrombolytic therapy is limited by a low efficacy of present formula-
tions of PAs. Conventional treatments using these therapeutic proteins are associatedwith several limitations in-
cluding rapid inactivation and clearance, short half-life, bleeding complications or non-specific tissue targeting.
Liposome-based formulations of PAs such as streptokinase, tissue-plasminogen activator and urokinase have
been developed to improve the therapeutic efficacy of these proteins. Resulting liposomal formulations were
found to preserve the original activity of PAs, promote their selective delivery and improve thrombus targeting.
Therapeutic potential of these liposome-based PAs has been demonstrated successfully in various pre-clinical
models in vivo. Reductions in unwanted side effects (e.g., hemorrhage or immunogenicity) as well as enhance-
ments of efficacy and safety were achieved in comparison to currently existing treatment options based on con-
ventional formulations of PAs. This review summarizes present achievements in: (i) preparation of liposome-
based formulations of various PAs, (ii) development of PEGylated and targeted liposomal PAs, (iii) physico-
chemical characterization of these developed systems, and (iv) testing of their thrombolytic efficacy. We also
look to the future and the imminent arrival of theranostic liposomal formulations to move this field forward.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Hemostasis represents a complex of normal physiological conditions
preventing massive loss of blood after vascular injury and enabling for
example demarcation of some infectious agent preventing their
hematogenic spreading. Blood vessel injury triggers physiological coag-
ulation processes that maintain the integrity of the circulatory system.
Inappropriate activation of hemostatic mechanisms leads to pathologi-
cal formation of a thrombus/clot (thrombosis). The pathogenesis of
thrombosis is related to several abnormalities such as injury to vessel
walls or endothelium damage caused through trauma or surgery, alter-
ations in the rheology of normal bloodflow induced by turbulentflowat
bifurcations or by flow stagnation and changes in blood composition
leading to hypercoagulability and hyperviscosity. There are two major
constituents that form the thrombus network, namely activated plate-
lets that produce a platelet plug and fibrin that forms a cross-linkedma-
trix (Fig. 1) [1].

Inside blood vessels, a clot obstructs blood flow through the circula-
tion and causes oxygen andnutrients deprivation to tissue leading to in-
farction. The clot can be formed in a place of occlusion or in some organs
(e.g., heart or veins) and it can be also dislodged to become free-floating.
Thereafter this traveling clot (embolus) is carried from such organs by
blood flow through the circulatory system to various tissues (e.g., brain
or lungs) eventually causing vessel obstruction or occlusion leading for
example to stroke or pulmonary thromboembolism) [1].

2. Plasminogen activators

Various plasminogen activators (PAs) exist for clinical treatment of
thromboembolic diseases. These include bacterial proteins such as
streptokinase (SK), and serine proteases including urokinase-type
plasminogen activator (u-PA), or tissue plasminogen activator (t-
PA). PAs catalyze proteolysis of plasminogen at the arginine 561–va-
line 562 peptide link and so act to convert inactive plasminogen into
active plasmin. The plasmin so formed triggers a fibrinolytic cascade
that induces thrombolysis by degradation of fibrin present in the
clot. The fibrin matrix can serve as both a plasmin substrate and as
a surface for the specific adsorption of plasminogen or t-PA as well.
Fibrinolytic activity in circulation is modulated by inhibitors of plas-
minogen activators (PAI-I, PAI-II) and inhibitors of plasmin (α1-
antiplasmin, α2-macroglobulin) [2].

One of the first PAs used for thrombolytic therapy was SK. SK does
not exhibit intrinsic enzymatic activity but instead activates plasmino-
gen indirectly. SK acquires plasminogen activation properties by com-
plexation with plasminogen. Upon interaction, the SK-plasminogen
complex so generated activates plasminogen conversion into plasmin.
However, SK activates not only fibrin-bound plasminogen but also cir-
culating plasminogen. This effect causes a systemic generation of plas-
min and can result in unwanted bleeding complications. In addition,
SK is a non-human protein with an immunogenic effect that is linked
to SK-specific antibodies. Therefore, multiple thrombolyses using SK
are restricted by protein immunogenicity [3]. An alternative PA based
on microbial proteins is staphylokinase (SAK) [4]. For SAK, high fibrin
affinity has been observed in contrast to SK. There is also urokinase
(UK), which is a direct PA. The human origin of UK removes the problem
of antigenic and pyrogenic properties. However, UK does not exhibit the
same affinity for fibrin as SK. UK also activates both fibrin-bound and cir-
culating plasminogen creating a serious risk of hemorrhage as well. Oth-
erwise, one of the most popular therapeutic PA is t-PA in various forms.
This t-PA is a direct PAwith selectivity for fibrin and also exhibitsminimal
immunogenic effects. Importantly t-PA has a 100-fold higher affinity for
fibrin-bound plasminogen in the presence of circulating plasminogen. In
terms of manufacture, t-PA is produced in a recombinant form (rt-PA).
For instance, alteplase, reteplase or tenecteplase all represent recently de-
veloped rt-PAs approved by the FDA for thrombolytic therapy.
Desmoteplase represent a novel potent PA under clinical trials. Currently,
there are only PA-based forms which reached the stage of clinical testing
or FDA approval for thrombolytic therapy. Generally, the developed PAs
demonstrate short blood half-lives, e.g. 5, 10 and 30 min for t-PA, UK
and SK, respectively [5]. Rapid renal clearance of the free proteins is stan-
dard due to the hydrophilic character and low molecular weight of the
proteins, so too is the threat of enzymatic degradation in blood during
passage through liver, spleen and kidneys. These factors significantly re-
duce the circulatory half-lives of PAs. Dosage application for a particular
PA was summarized by Baruah et al. [5,6].

Fig. 1. The clot network formed by activated platelets (black arrows) and fibrin fibers
(white arrows) observed by scanning electron microscopy.
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