Contents lists available at ScienceDirect

Review

Materials Science and Engineering C

journal homepage: www.elsevier.com/locate/msec

Stem cells and biomimetic materials strategies for tissue engineering

Susan Liao ^{a,b}, Casey K. Chan ^{a,b}, S. Ramakrishna ^{a,c,*}

^a Division of Bioengineering, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 117576, Singapore

^b Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119074, Singapore

^c Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, 117576, Singapore

ARTICLE INFO

Article history: Received 16 July 2008 Accepted 19 August 2008 Available online 27 August 2008

Keywords: Stem cells Tissue engineering Biomimetic materials Nanotexture Cell therapy

Contents

ABSTRACT

Stem cells have been recognized as a promising alternative to somatic cells in the application of cell therapy owing to their potential to renew themselves through cell division and to differentiate into a wide range of specialized cell types. In order to maintain the phenotype expression and differentiated functions of stem cells, the simulated natural environment of the biomimetic material support has to provide the appropriate signals to the attached cells. Scaffolds with biomimetic components and nanotexture can provide chemical, physical as well as spatial cues that are essential to mimic natural tissue growth. Moreover, the plasticity of stem cells provides the basic possibility for multiple-tissue engineering using a certain type of stem cells. Progress in the understanding of self-renewal and directed differentiation of stem cells on biomimetic materials will lead scientists to propose the possibility of cell-based therapies to treat diseases, including the use of stem cells in tissue engineering. In this review paper, we will discuss the current state of the art and future perspectives on stem cells and biomimetic materials strategies for tissue engineering.

1.	Currei	ent tissue engineering	1189						
	1.1.	Scaffold development	1190						
		1.1.1. Synthetic and natural materials for scaffolds	1190						
		1.1.2. Technologies for scaffold fabrication	1190						
	1.2.	Cell culture – somatic cells and stem cells	1191						
	1.3.	Incorporation of growth factors	1191						
2.	Stem	n cells	1191						
	2.1.	Adhesion and expansion of stem cells	1191						
		2.1.1. Adhesion supported by ECM like substrates	1191						
		2.1.2. Expansion of MSCs and HSCs by developing stem cell niches.	1192						
	2.2.	Differentiation of stem cells	1193						
		2.2.1. Chemical cues – soluble reagents and substrates	1193						
		2.2.2. Topographical cues – from micro to nanotexture	1194						
		2.2.3. Mechanical cues	1195						
		2.2.4. Electrical stimulus and other cues	1197						
3.	Biomi	nimetic scaffolds	1197						
	3.1.	Nanofibrous scaffolds	1198						
	3.2.	Nanocomposite scaffolds for hard tissue engineering	1198						
	3.3.	Biomolecule based scaffolds	1199						
4.	Prosp	pects of stem cell/biomimetic scaffolds construct.	1200						
	4.1.	Multi-morphogenesis in stem cell-based tissue engineering	1200						
	4.2.	Clinical scaled tissue engineering	1201						
5.	Concl	lusion	1201						
Ackn	owled	dgements	1201						
Refe		1201							

E-mail address: seeram@nus.edu.sg (S. Ramakrishna).

^{*} Corresponding author. Healthcare and Energy Materials Lab, Faculty of Engineering, Block E3, #05-14, 2 Engineering Drive 3, National University of Singapore, 117576, Singapore. Tel.: +65 65162162; fax: +65 67730339.

^{0928–4931/\$ –} see front matter 0 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.msec.2008.08.015

1. Current tissue engineering

Since the initiation of tissue engineering 15 years ago, the development is still far from achieving its long-term goal: to control and regulate the potential of natural tissue regeneration for defect repair or even organ regeneration. Although a series of technological advancements have been achieved thus far, new strategies are needed to further develop tissue engineering for wider clinical applications.

The so-called triad in tissue engineering encompasses three basic components: scaffolds, cells and signaling biomolecules (or growth factors). The principal components of extracellular matrix (ECM) are collagen biopolymers, mainly in the form of fibers and fibrils. One specific design objective of a porous scaffold for tissue engineering is to fabricate a porous scaffold out of absorbable polymer that mimic the extracellular matrix in supporting cell proliferation and organization. Other forms of polymer organization like gels, foams, and membranes have also been used as scaffolds for tissue engineering. The various forms can be combined in the laboratory to create imitations of biopolymer organization for specific tissue type [1]. Scaffolds can be enriched with signaling biomolecules, which may be surface bound or blended. Those developmental signals provided by the scaffolds will induce the cells to secret extracellular matrix and/or tissue/organ regeneration.

1.1. Scaffold development

1.1.1. Synthetic and natural materials for scaffolds

In general, to promote cellular functions, scaffolds used for tissue engineering should have the following characteristics: biocompatibility, biodegradability, reproducibility, high porosity with interconnected pores, and no potential of serious immunological or foreign body reactions. In addition it is also highly desirable that the scaffold has the ability to promote ECM secretion, and to carry biomolecular signals [2-5]. Owing to their functional properties and design flexibility, polymers are the primary choice of materials for making scaffolds. Polymers used for making scaffolds are classified as either naturally derived polymers or synthetic polymers [6]. The former includes collagen, gelatin, chitosan, chitin, cellulose, and starch. The later includes frequently used biodegradable synthetic polymers such as poly(lactic acid) (PLA), poly(glycolic acid) (PGA), poly(lactic-coglycolic acid) (PLGA), poly(ɛ-caprolactone)(PCL) and poly(lactic-cocaprolactone) (PLA-CL). These are all approved by the US Food and Drug Administration (FDA) for certain biomedical applications. In Table 1, we highlight the degradation characteristics of various synthetic polymers. The biodegradation rate is one of most important considerations and it is highly desirable to ensure that the degradation

Table 1

Biodegradable synthetic polymers and their degradation rates

Biodegradable polymer	Typical applications	Polymer degradation rat (months)
Polyorthoester	Bone ingrowth applications, drug delivery	Half life of 4 h
Poly(DL-lactic acid) (PDLA)	Drug delivery, tissue regeneration	12-16
Poly(L-lactic acid) (PLLA)	Sutures, orthopedic devices, tissue regeneration	>24
Poly(glycolic acid) (PGA)	Drug delivery, sutures.	6–12
Poly(lactide-co- glycolide) (PLGA) (50:50)	Sutures, films for retinal pigment epithelium transplantation and guided tissue regeneration, fracture fixation, oral implant, drug delivery.	Half life of 1.5 months
Polycaprolactone (PCL)	Long-term implantable drug delivery system, tissue regeneration.	>24
Polyanhydrides Tyrosine-derived polycarbonates	Orthopedic prosthesis, drug delivery. Orthopedic applications.	Half life of 1 h Very slow degradation

Table 2

Traditional technologies for tissue scaffold fabrication

Technology	/	Advantages	Disadvantages
Thermally	induced phase	Simple and fast, with	Low level of pore size control.
separation	(TIPS)	wide ranges of	
		shapes and sizes.	
Porogen le	aching	Inexpensive, able to	Time-consuming, undesirable
		form pores with	porogen residue.
		defined shapes.	
Gas		Permits solvent free	Low interconnectivity, low pore
foaming		formation of porous	size.
		scaffold.	
	Stereolithography	Relatively good	Limited photopolymer
		resolution.	materials available, expensive.
	Selective laser	Plastic or plastic	Reduced resolution and poor
	sintering	composite using	surface finish
		fiber or others as	
		filler.	
	3D-pinting	Laser is not needed,	Adhesive liquid may reduce
		less expensive.	biocompatibility of scaffold.
	Wax printing	Laser is not needed,	Ceramic materials are used, no
		less expensive.	suitable for polymer
Solid	Fused deposition	Controllable fiber	Limited to thermoplastic
free-form	modeling	pattern.	materials with good viscosity
(SFF)			property, cannot encapsulate
			cells or other biological agents.
	Bioplotter	Direct incorporation	Limited 3D size.
		of cells into the	
		scattold	

rate matches with the speed of new tissue regeneration at the defect site. If the degradation is more rapid than the tissue regeneration, the scaffold will lose its carrier function for cell growth; on the other hand, if the degradation is too slow compared to the tissue regeneration, the scaffold will impede tissue regeneration.

Collagen, the primary structural protein of the native ECM, is the most widely used natural polymer for making scaffolds. Furthermore, it has desirable functional properties, making it favorable for cellular growth. Since collagen extracted from natural sources is known to elicit immunogenic responses upon implantation, the direct use of natural collagen has become limited. Instead, purified collagen or reconstituted collagen, which causes relatively low immunogenic responses, can be produced by biochemical processing and is commercially available. The main disadvantage of using collagen in scaffold is the rapid degradation rate and weak mechanical property. To overcome this deficiency, collagen fibers have been cross-linked to retard the degradation rate.

Due to its favorable biocompatibility and biodegradability, PLA is one of the most frequently used synthetic polymers for scaffold materials [7]. The left-handed (L-lactide) and right-handed (D-lactide) are the two enantiomeric forms of PLA, with PDLA having a much higher degradation rate than PLLA. PLLA is better than PDLA for its higher biocompatibility. Its high mechanical strength makes it suitable for many medical applications, such as biodegradable suture, bone fixation pins etc. PGA is a hydrophilic polymer with a higher biodegradation rate than PLA both in vivo and in vitro. As for PLGA, the copolymer of PLA and PGA, the biodegradation rate and mechanical strength can be manipulated by changing the ratio of LA and GA units. In order to ameliorate the acidic byproducts of biodegradation, a copolymer of PLA and PCL is used. The copolymer ratio of PLA and PCL can be adjusted for a longer degradation period and other properties such as hydrophilicity and mechanical properties can be adjusted as well [8]. Using the above mentioned polymers, various types of porous scaffold can be made and the surface can also be functionalized to achieve higher biocompatibility for enhanced performance [9–11].

1.1.2. Technologies for scaffold fabrication

Although a number of fabrication technologies have been applied to process biodegradable and bioresorbable materials into 3D polymeric scaffolds with high porosity and surface area, most of these methods focus on fabrication at the micro or macro level. In Table 2 we Download English Version:

https://daneshyari.com/en/article/1430812

Download Persian Version:

https://daneshyari.com/article/1430812

Daneshyari.com