
Biases in signal evolution: learning
makes a difference
Carel ten Cate1 and Candy Rowe2

1 Behavioural Biology, Institute of Biology, Leiden University, PO Box 9516, 2300 RA Leiden, The Netherlands
2 Centre for Behaviour & Evolution, Division of Psychology, Newcastle University, Henry Wellcome Building, Framlington Place,

Newcastle upon Tyne, NE2 4HH, UK

It is now well established that signal receivers have a key
role in the evolution of animal communication: the suite
of sensory and cognitive processes by which animals
perceive and learn about their environment can have a
significant impact on signal design. A crucial property of
these information-processing mechanisms is the emer-
gence of ‘receiver bias’ in the behavioural responses to
signals. Whereas most research has focussed on receiver
biases in the sensory system, more recent studies show
that biases can also arise from learning about signals.
Here, we highlight how learning-based biases can arise,
and how these differ from biases emerging from sensory
systems in their impact on signal evolution.

Signal evolution by receiver biases
A commonly held view is that signal evolution progresses
through selection for costly signals that provide receivers
with reliable information [1–4]. However, over recent
years, this position has been eroded by studies showing
that signal evolution can be driven by ‘receiver biases’
[5–10]. Receiver biases can be defined as byproducts of
natural selection or as incidental non-selected con-
sequences of the way in which sensory systems or brains
are formed [4], predisposing receivers to respond more
strongly to one signal than to another and even to prefer
novel signals [9,10]. Here, we demonstrate that different
types of receiver bias operate under different conditions
and can have different implications for signal evolution.
We focus on two opposite corners of what can be viewed as a
continuous space determined by two different dimensions
of the proximate mechanisms underlying receiver biases.
The first dimension is whether biases result from the
peripheral physiology of sensory systems or from higher
cognitive brain processes. The second dimension is devel-
opmental phenotypic plasticity: some biases develop in the
same way over a wide range of conditions, whereas others
depend heavily on specific experience.

We differentiate here between ‘sensory system biases’
(see Glossary), which we define as receiver biases arising
frommoreperipheralandprimarysensoryprocessingmech-
anisms and also showing limited if any phenotypic
plasticity, and ‘learning-based biases’, which we define as
arising from central information processing involving
plasticity generated by learning. Inmaking this distinction,

we create a false dichotomy within a continuum. However,
we do so to illustrate how different proximate mechanisms
can differ in their impact on signal evolution.

Sensory system and learning-based biases
Perhaps themost well known andwidely cited example of a
signal that might have evolved owing to a sensory system
bias is the ‘chuck’ component of the male mating call in the
Túngara frog Physalaemus pustulosus. Results from com-
parative studies suggest that, before the chuck signal
evolved, ancestral female frogs already had a bias in their
auditory system to respond to particular sound features,
which drove subsequent call evolution [5,6]. Other
examples of traits that are likely to have evolved by
exploiting sensory system biases are the swords of sword-
tail Xiphophorus fish [7,8], the vibratory signals of the
water miteNeumania papillator [11,12], the red coloration
of the male three-spined stickleback Gasterosteus aculea-
tus [13] and the blue and yellow coloration of two
Lake Victoria cichlid species Pundamilia pundamilia
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Glossary

Area shift: a phenomenon similar to peak shift where the peak response

remains highest for the training stimuli but the generalization gradient is

asymmetric, resulting in higher responses to novel stimuli away from the S+ in

the direction opposite from the S� and vice versa.

Discrimination learning: the process by which animals learn to discriminate

among stimuli, either along a single stimulus dimension or using more

complex multidimensional features.

Generalization gradient: the degree to which an animal trained to respond to a

particular stimulus will respond to novel stimuli that vary along a stimulus

dimension shared with the training stimulus.

Intensity dimension: stimuli differ along an intensity dimension when they

stimulate the same receptors but to a different extent; for instance, two lights

of the same wavelength differing in intensity; chemical substances differing

only in concentration; or tones differing only in amplitude.

Learning-based bias: a receiver bias that is generated through learning; for

example, peak shift.

Peak shift: a consequence of discrimination learning between an S+

(a positively rewarded stimulus) and an S� (a negatively or neutrally rewarded

stimulus) that differ along a stimulus dimension, leading to stronger

responding to novel stimuli away from the S+ in a direction opposite from

the S�, and vice versa (Box 1).

Rearrangement dimension: stimuli differ along a ‘rearrangement’ dimension

when each stimulus addresses a different set of receptors, such as lights

differing in wavelength; chemicals of different structure; or tones of different

frequency. Whereas an intensity dimension can be considered a quantitative

dimension, the rearrangement dimension is more qualitative.

Sensory system bias: a receiver bias arising from peripheral sensory

processing. Although this need not imply absence of environmental plasticity,

we assume here that it does.

Stimulus dimension: any aspect of a stimulus that can vary along an axis; for

example, light intensity or angle of orientation.Corresponding author: ten Cate, C. (c.j.ten.cate@biology.leidenuniv.nl).
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and Pundamilia nyererei [14]. These biases are assumed
either to be byproducts of the sensory systems involved [7]
or to arise in these systems as a result of selection for signal
detection in other contexts. For example, the vibratory
water movements in the water mite might have arisen
from exploiting predator detection mechanisms [11,12],
the red coloration of stickleback males might result from
selection for preferences for red food items [13], and the
blue and yellow colour in cichlidsmight be a consequence of
a differential sensitivity to long and short wavelengths
owing to adaptation to different ambient light conditions in
both species [14]. Although we do not know whether these
biases lack phenotypic plasticity, this is often implied from
the finding that related species share similar biases and
that the processing is peripheral. Here, we assume that
they have limited plasticity.

Learning-based biases arise from the cognitive
mechanisms that process and store information. There is
an increasing awareness that biases based on cognitive
processes could be just as important for signal evolution as
are sensory system biases [15–25]. Not all biases arising
from cognitive processing are necessarily plastic. However,
most interesting from our perspective are biases that arise
from the way in which animals learn to recognize import-
ant environmental features. One mechanism that can
generate a learning-based bias is that of ‘peak shift’, which
emerges from learning to discriminate among stimuli
[26,27]. Using peak shift as an example, we highlight
the need to consider sensory system and learning-based
biases as distinct selection pressures in signal evolution.

Learning and generalization
In many contexts, responding to signals involves learning.
Avian predators, for instance, avoid prey with aposematic
warning signals by learning to associate the coloration
with the defences (e.g. Ref. [28]), songbirds learn to recog-
nize the songs of conspecifics or local geographical variants
of songs (e.g. Ref. [29]), and bumble bees learn to recognize
the colour of the most profitable flowers [30]. Recognition
involves remembering particular signals, but also discri-
minating them from other similar signals. Thus, predators
can learn to discriminate between undefended and
defended prey using visual patterns, songbirds learn to
ignore the songs of other sympatric bird species, and
bumble bees learn to avoid the colours of less profitable
flowers. This discrimination learning process also deter-
mines how animals respond to novel stimuli; that is, how
they generalize (e.g. Refs [26,27,31–33]).

Generalization gradients resulting from discrimination
learning have been extensively studied by psychologists
in experimental laboratory settings, often using simple
artificial stimuli, such as tilted lines, lights of different
wavelengths or tones of different frequency (e.g. Refs
[26,27,31–34]). In these experiments, animals are usually
trained to discriminate between two stimuli that are differ-
entially reinforced, where one stimulus indicates the
presence of a reward (S+), and the other stimulus is neutral
or indicates some punishment (S�). After training, animals
are presented with novel stimuli that differ from their
training stimuli to varying degrees, and their responses
are measured. Although wemight expect that the strongest

responses are seen towards the training stimuli, this is not
always the case, and the strongest response might be given
to stimuli that are more extreme on the dimension separ-
ating the training stimuli (Box 1). This shift in generaliz-
ation gradient is known as a ‘peak shift’ because the peak
response is shifted along the training dimension away from
the original stimuli used in training. The shape of this
generalization gradient differs depending on whether the
training stimuli vary along an ‘intensity’ dimension (e.g. two
lights of the same wavelength differing in intensity) or
qualitatively along a ‘rearrangement’ dimension (e.g. two
lights of the same intensity but of a different wavelength)
(Box 1).

A less extreme version of peak shift is ‘area shift’, where,
although the peak response remains highest for the train-
ing stimuli, the generalization gradient is skewed, with
novel stimuli on the S� side of S+ receiving fewer responses
than S+ and novel stimuli on the other side of S+ getting
similar responses as S+ [34,35]. Apart from peak and area
shift, other types of generalization processes can also bring
about preferences for novel stimuli, such as ‘range effects’
(e.g. Ref. [34]), in which the location of the peak in respond-
ing depends on the range of stimuli used in testing. How-
ever, the relevance of these processes to signal evolution is
still unclear.

Peak shift is an example of a learning-based bias that
can drive signal evolution. It is taxonomically widespread,
occurring in vertebrates and invertebrates, and appears to
be a general property of discrimination learning. Peak shift
is also found for a range of different stimuli in different
sensory modalities (e.g. vision, hearing or olfaction), and
along many perceptual dimensions (e.g. such as the
frequency, duration or amplitude of a sound signal). It is
a fundamental property of discrimination learning; there-
fore, whenever animals learn to discriminate among clo-
sely similar signals, whether prey coloration, conspecific
song, or floral colours, they might develop biases that can
select for more extreme signals. However, does peak shift
occur in more biologically relevant contexts similar to the
ones the animal has to solve in every day life, or with more
complex stimuli compared with the tilted lines or coloured
keys found in traditional experimental psychology exper-
iments?

Peak shift in the natural world?
There is increasing evidence for peak shifts in a more
natural context. One example of this concerns a task that
humans perform in daily life: face recognition. Humans
show peak shift when they have to distinguish similarly
looking faces [35]. This is also thought to give rise to the
phenomenon where we are better at recognizing familiar
individuals from caricatures exaggerating specific features
than from drawings based on real facial features [36]. For
animals, several recent studies have also used complex
stimuli that either are close to natural ones or are biologi-
cally relevant, for instance using a learning task that is
more similar to one they are likely to experience in the
wild. Peak shift has, for example, been observed in the
spatial orientation of pigeons Columbia livia and honey
bees Apis mellifera in relation to artificial ‘landmarks’
[37,38], while sphinx moths Manduca sexta, which use
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