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a b s t r a c t

The discrete element method (DEM) is an effective computational technique that is used to investigate
the mechanical behavior of various particle systems like, for example, agglomerates. However, for sys-
tems of perfectly spherical and non-overlapping particles, the structural input is almost always based
only qualitatively on experimentally observed structures. In this paper, we consider the case of agglom-
erates where particles are nearly spherical and connected by bonds. A novel bonded-particle extraction
(BPE) method is proposed for the automated approximation of such agglomerate structures from
tomographic data sets. This method can be effectively used in conjunction with various commercial or
open-source DEM simulation systems. By BPE, sphere-like primary particles are represented each by
exactly one (perfect) sphere, and the set of spheres is non-overlapping. Furthermore, the solid bridge
bonds between primary particles are retained. Having derived such a simple description of complex
tomographic data sets, one can perform DEM simulations with well-established models like the
bonded-particle model. Moreover, it is shown that a larger data base of statistically equivalent
microstructures can be generated by a stochastic modeling approach. This approach reduces the need
for (time-consuming) experimental agglomerate production and characterization.
� 2016 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder

Technology Japan. All rights reserved.

1. Introduction

The discrete element method (DEM) [1] is a modern and
effective computational technique to simulate the mechanical
behavior of granular systems on microscale. A common approach
to the simulation-based investigation of agglomerates is the
bonded-particle model [2]. The particles are specified as a dense
packing of spheres that are bonded together. Usually, particles
are spherical and bonds cylindrical. More complex geometries
are possible, but they lead to higher computational effort. This is
due to the need for more complex contact models or the descrip-
tion of complex objects as a cluster of spheres [3–7]. So far, very
often agglomerate microstructures are obtained by generating
packings of (bonded) particles, such that they have similar
properties as observed experimentally in real agglomerates (see,
e.g., [8–10]). However, more realistic morphologies are desirable
[7]. In the last few years, the microstructural characterization in
3D using lCT has become feasible and, therefore, more popular.
For example, agglomerate microstructures have been studied

[11,12] and, e.g., their relationship to process variables has been
investigated [13,14]. As a link to DEM, a direct approach is to
approximate 3D structures of real agglomerates by (idealized)
objects. Recently, experimentally obtained structures have been
represented by different kinds of objects. For example, individual
particles may be approximated by ellipsoids [15,16], clusters of
(non-overlapping or overlapping) spheres [15,17,18], polyhedra
[19] or splines [20]. In that case, DEM simulations and real exper-
iments can be compared directly – the structures are not only sta-
tistically equivalent with respect to some characteristics, they are
identical (under the restriction of having idealized objects).

In this paper, we consider the case of highly spherical primary
particles. In contrast to the literature mentioned above, this allows
us to represent each particle by exactly one sphere. However, this
simplicity comes at a cost. Even for a packing of particles with high
sphericities of about 0:9, it is hard to find a non-overlapping set of
spheres without changing the structure too much. To the authors
knowledge, volume-equivalent spheres with a subsequent DEM
relaxation step have been used to obtain particle configurations
from tomographic data; see, e.g., [21]. However, the presence of
solid bridges in agglomerates is a problem because mechanical
equilibrium of the system is not a sufficient criterion for relaxation,
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and, of course, solid bridges have a volume as well. With these
problems in mind, we propose a new automated method to extract
bonded particle systems from tomographic data. We state an opti-
mization problem to find a configuration of bonded particles such
that (i) the spherical particles are non-overlapping, (ii) the cylindri-
cal bonds match the thickness of solid bridges, (iii) the agglomerate
mass does not change, and (iv) the shape and size of the agglomer-
ate is captured well. A stochastic optimization method is applied to
find a solution to this high-dimensional and multi-extremal opti-
mization problem. We call this method the bonded-particle extrac-
tion (BPE) method.

In the second part of the paper, we show how statistically
equivalent microstructures can be obtained by a parametric
stochastic model for agglomerate microstructures. The model
proposed in [22] is fitted to real agglomerate structures. There
are several advantages of such an approach. First, one can reduce
the number of real agglomerates that have to be produced and
characterized experimentally. Second, realizations generated by a
fitted stochastic model are more closely related to the real
microstructures than packings generated with less information
(e.g., only based on aggregated characteristics like the mean coor-
dination number). Third, parametric models allow the systematic
variation of individual structural parameters in a realistic setting.
As mentioned in [22], this is an important step to obtain reliable
results by means of DEM, which leads to a better understanding
of the relationship between microstructure and mechanical
properties.

2. Experimental data

In this contribution, agglomerates consisting of maltodextrin
(DE47) primary particles have been analyzed. Maltodextrin is a
material which is widely used as a model substance for amorphous
food powders and employed often as carrier or filler in the food
industry. The production of agglomerates was performed in three
subsequent steps: (1) creation of spherical primary particles; (2)
storage of primary particles under specific conditions (tempera-
ture, humidity); (3) agglomeration of primary particles under high
temperature.

To produce spherical maltodextrin particles, a solution consist-
ing of 70 wt% maltodextrin and 30 wt% water was prepared. In
order to decrease the water content, the solution was preheated
in the microwave oven. Afterwards, it was dropped via separate
droplets into an oil bath and primary particles were formed. For
further decrease of the water content, the particles were placed
in the oven at a temperature of 85 �C. This allows to get primary
particles with a mean sphericity of 0:864 (standard deviation
0:026; sphericity as defined by Wadell [23]) and water content of
3 wt% (Fig. 1(a)). In the second step, in order to reproduce different
storage conditions, the water content of primary particles was
increased by placing them into a chamber with high air humidity
and temperature. Finally, agglomerates were assembled by putting
particles together into spherical (Fig. 1(b)) or cylindrical form and
placing them in the oven at a temperature of 65 �C.

In total, 34 maltodextrin agglomerates were produced and char-
acterized using a lCT 35 of SCANCO Medical AG. The tomographic
reconstruction was performed based on 100 rotations, where each
2D cross-section was captured at a resolution of 2048� 2048 pix-
els. A visualization is given in Fig. 2. There are 10 spherical agglom-
erates (diameter about 16 mm) and 24 cylindrical agglomerates
(diameter about 16 mm, height about 11 mm). A dataset label is
assigned to each agglomerate. The spherical agglomerates are
labeled by elements of a certain set LS, the cylindrical agglomer-
ates by LC , and L ¼ LS [ LC corresponds to all datasets. Further-
more, the mass of each agglomerate was measured. It is in the

range of 1.8–2.25 g, where each agglomerate consists of about
130–170 primary particles.

3. Image processing

The tomographic data sets are denoted by
I‘ ¼ fI‘ðx; y; zÞ 2 f0; . . . ;255g : ðx; y; zÞ 2 Wg, where ‘ 2 L denotes
the considered dataset and W � N3 is a grid of voxel coordinates.
Because of the high resolution, the original image data
were (down) scaled by factor 0:5 in all three directions. The final
grid of voxel coordinates has a size of 1024� 1024� 1024 and
the edge length of a voxel in the processed data corresponds to
0:02 mm.

In a first step, all images are preprocessed. As the sample holder
is visible, it is removed from all data sets. This is easily possible by
setting the affected voxels to black, i.e., grayscale value zero,
because the sample holder is located at the same position in all
datasets. Furthermore, a median-filter [24] with a box size of
3� 3� 3 voxels is applied, which reduces noise without losing
much structural specifics. The resulting images are denoted by I0‘.

Global thresholding is used to binarize all images I0‘. For a
threshold s‘, the resulting binary image Is‘‘ is given by

Is‘‘ ðx; y; zÞ ¼
255 if I0‘ðx; y; zÞ P s‘;
0 if I0‘ðx; y; zÞ < s‘;

(

where the value 255 corresponds to the solid (maltodextrin) phase,
also called foreground phase. Because the mass of each agglomerate
and the density q ¼ 1500 kg/m3 of maltodextrin are known, the
threshold s‘ can be chosen such that the ‘‘mass” of the foreground
phase

# ðx; y; zÞ 2 W : Is‘‘ ðx; y; zÞ ¼ 255
� � � ð0:02 mmÞ3 � q

corresponds to the experimentally measured mass as closely as
possible (#A denotes the number of elements in a set A).

Having obtained the thresholds s‘ and the corresponding
thresholded images Is‘‘ , a further processing step is necessary to
obtain the final binary image that will be used in all subsequent
steps. One can observe that there are very small foreground or
background clusters of voxels present in the thresholded images,
which are obviously not relevant. The Hoshen–Kopelman
algorithm [25] is applied to detect clusters in the foreground as
well as in the background. Small clusters with a volume of at
most 53 voxels are removed. The resulting binary images are

denoted by Ibin‘ .

3.1. Agglomerate shape parameters

Later on, the position and exact shape of agglomerates is
required. Therefore, it is necessary to detect the spheres or cylin-
ders that match the agglomerates best. It is already known which
agglomerate has a spherical or cylindrical shape. However, the
exact coordinates and sizes of these spheres and cylinders have
to be determined.

The Hough transform (HT) [26–28] is used to estimate the
‘‘best-fit” spheres or cylinders, respectively. The idea of the HT is
to maximize the agreement between the boundary of an object
observed in (binary) image data, and a simple geometric object
that has one or several parameters. Essentially, the (discretized)
parameter space is scanned and a so-called accumulator space is
constructed, where a score is assigned to every parameter. The
score is the number of voxels that belong to the object boundary
in both the image and the parametric object. Then, the global max-
imum in this accumulator space identifies the object providing the
best match. For example, for a sphere there are four parameters:
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