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Effect of a wall on flow with dense particles q
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a b s t r a c t

The behavior of dense gas–solid flows in engineering applications such as fluidized beds and pneumatic
conveyers is highly complex and a reliable numerical model is required. Such flows are usually within
solid walls that considerably affect the flow fields, and it is important to correctly include this effect in
numerical models to improve their prediction capability. The observation of microscopic flows near walls
can enhance our understanding of the flow behavior and assist in improving models. In this study, direct
simulations are performed to investigate the effect of a wall on flow fields at a microscopic level. The
effects of the bulk void fraction, particle Reynolds number, and particle diameter are investigated. The
prediction performances of existing correlation equations usually used in mesoscopic model calculations
are also investigated. It is found that the Ergun and Beetstra equations produce large discrepancies in the
region within a distance equal to the particle diameter from the wall.
� 2012 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder

Technology Japan. All rights reserved.

1. Introduction

Dense particles coexist with a gas in industrial equipment such
as fluidized beds and pneumatic conveying systems. The flow
behavior of the gas–particle mixture is significantly influenced by
the interactions between the particles, between the particles and
the wall and between the particles and the gas. The spontaneous
formation of mesoscopic heterogeneous structures inside the
equipment, such as bubbles that are far larger than the particles,
makes the flow more complex. A better understanding of the flow
behavior and design optimization is therefore desired. This has,
however, not been successfully achieved owing to observation dif-
ficulties in experiments. Against this background, the development
of numerical models has been extensively pursued until the present
time. The majority of these models are mesoscopic in the sense that
the size of the computational cells of the fluid motion is small en-
ough to resolve characteristic mesoscopic structures but too large
to directly capture the microscopic phenomena on the particle level
[1–3]. The models have been applied to several flow problems, and
the reproduction of size and frequency with which bubbles appear
in fluidized beds have been successfully demonstrated.

In practical engineering situations, solid walls that significantly
influence the behavior of both phases are very common. It is impor-
tant to correctly express the influence of the solid walls whenever a
numerical simulation is performed. In mesoscopic model calcula-

tions, the momentum exchange between solid particles and the
gas in a computational cell is generally determined by using empir-
ical equations that are a function of the void fraction and the particle
Reynolds number. In the majority of existing models, empirical
equations such as those of Ergun [4], Di Felice [5], and Beetstra
et al. [6] are used without any modifications, including in computa-
tional cells near a solid wall. The existence of a wall directly exerts
viscous friction on nearby fluids and affects the arrangement of
nearby particles. As a result, the anisotropy of the flow in the vicinity
of solid walls is increased. In the aforementioned empirical equa-
tions, the effect of the wall is not considered and it is questionable
to use these equations for computational cells near solid walls.
Moreover, the problem is one that has been recognized by research-
ers since early times and was mentioned by Beetstra et al. [6]. When
microscopic flows are directly considered, fluid motions should
obey the Navier–Stokes and continuity equations, and it is appropri-
ate to use the no-slip boundary condition on the surface of solid
walls. However, in mesoscopic model calculations based on locally
phase averaged equations, microscopic flows occurring on a sub-
grid scale are averaged and it is questionable to use the no-slip
boundary condition on the surface of solid walls on the mesoscopic
cell scale. Currently, different boundary conditions are used
depending on a study, and a general consensus is yet to be achieved.

For further improvement of mesoscopic models, it is important
to adopt a proper drag correlation in computational cells near a so-
lid wall and a proper boundary condition on the wall. This cannot
be accomplished without a thorough understanding of the behav-
ior of microscopic flows near such walls, which never be captured
by the mesoscopic model calculations. Although the effects of a so-
lid wall on a flow that contains dense particles have been investi-
gated [7–9], it is still difficult to directly observe microscopic flows
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on a particle scale by experimental methods. In the present study,
the body-force-type immersed boundary method (IBM) is used to
conduct microscopic numerical simulations of flows that contain
dense solid particles near a solid wall, and the effects of the wall
on the flow behavior are investigated in detail. In addition, the data
obtained from the microscopic simulations are used to discuss the
validity of the empirical drag equations popularly used in meso-
scopic model calculations. In this paper, which is the first report,
we restrict our discussions to the case of a fixed particle.

2. Calculation methods

2.1. Governing equations

It is assumed that the fluid is incompressible and Newtonian
and the particles are rigid spheres. The governing equations of
the fluid flow are the continuity equation and Navier–Stokes equa-
tion, respectively, expressed below:

r � uf ¼ 0 ð1Þ

qf
Duf

Dt
¼ r � sþ qf g ð2Þ

where uf and qf are respectively the fluid velocity and density, g is
the acceleration due to gravity, p is the pressure, lf is the fluid vis-
cosity, and s is the stress tensor given by

s ¼ �pI þ lf ½ruf þ ðruf ÞT � ð3Þ

The particles are tracked individually in a Lagrangian manner by
using the equations of translational and rotational motions:

dðmpUpÞ
dt

¼
Z

Sp

s � ndSþ Gp ð4Þ

dðIpXpÞ
dt

¼
Z

Sp

r � ðs � nÞdSþMp ð5Þ

where Up and Xp respectively represent the translational and rota-
tional velocities of the particle, mp is the mass of the particle, Ip is
the moment of inertia given by Ip = (2/5)a2mpI for a particle with ra-
dius a, Gp and Mp are respectively the external force and moment,
and r is the relative position vector from the center of a particle.

2.2. Body-force-type IBM [10]

Kajishima et al. developed the body-force-type IBM for particle–
fluid systems. Here, the assumption of a uniform Cartesian grid is
used to simplify the explanation. The presence of particles is repre-
sented by the solid volume fraction of particles in each computa-
tional cell a. Kajishima et al. [10] introduced the following
coupling velocity weighted by the solid volume fraction of
particles:

u ¼ aup þ ð1� aÞuf ð6Þ

where up is the particle velocity given by up = Up + r �Xp. The par-
ticles are solid and no-slip and no-permeability conditions are im-
posed on their interfaces. Hence, the continuity restriction also
applies to u:

r � u ¼ 0 ð7Þ

The following equation for u is introduced:

@u
@t
¼ � 1

qf
rpþ H þ f p ð8Þ

where

H ¼ �uruþ mfr � ½ruþ ðruÞT � þ g ð9Þ

and mf is the kinematic viscosity of the fluid. In Eq. (8), fp is the inter-
action force term that enforces all the predicted velocity fields
(including inside the particles) to the particle–fluid coupling veloc-
ity field. This is explained in terms of the time-marching procedure.
If Eq. (8) marches in time with the explicit Euler method, it would
be

Nomenclature

a particle radius (m)
dp particle diameter (m)
FD fluid drag force (N)
FL fluid lift force (N)
fp interaction force (m/s2)
Gp external force acting on a particle (N)
g acceleration due to gravity (m/s2)
I unit tensor (–)
Ip moment of inertia (kg m2)
L streamwise domain size (m)
Lx, y, z domain size in x, y, and z directions (m)
Mp external moment acting on a particle (N m)
mp particle mass (kg)
Np number of particles in the computational domain (–)
n vector normal to the surface of a particle (–)
nx, y, z number of grid points in x, y, and z directions (–)
p fluid pressure (Pa)
Rep particle Reynolds number (–)
r relative vector from the center of a particle (–)
Sp surface area of a particle (m2)
t time (s)
U inflow velocity (m/s)
Up translating velocity of a particle (m/s)
u coupling velocity weighted by particle volume fraction

(m/s)

u0 superficial velocity (m/s)
uf fluid velocity (m/s)
up particle velocity (m/s)
uy streamwise fluid velocity (m/s)
~u velocity predicted as a fluid (m/s)
V volume of computational domain (m3)
Vp volume of a particle (m3)
a volume fraction of particle in each computational cell (–)
Dp pressure drop (Pa)
DpBeetstra pressure drop predicted by Beetstra equation (Pa)
DpDF pressure difference imposed as a driving force (Pa)
DpErgun pressure drop predicted by Ergun equation (Pa)
Dt temporal increment (s)
Dx computational cell size (m)
e void fraction in whole region (–)
qf density of fluid (kg/m3)
lf viscosity of fluid (Pa s)
mf kinetic viscosity of fluid (m2/s)
s stress tensor (Pa)
Xp rotational velocity of a particle (rad/s)
w nondimensional pressure drop (–)
h i spatial average in whole region
h iyz spatial average in y–z plane

temporal average
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