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a b s t r a c t

Bilayer graphene and its thicker cousins with Rhombohedral stacking have attracted considerable
attention because of their susceptibility to a variety of broken chiral symmetry states. Due to large
density-of-states and quantized Berry phases near their gapless band touching points, each spin-valley
flavor spontaneously transfers charge between layers to yield opening of energy gaps in quasiparticle
spectra and spreading of momentum-space Berry curvatures. In this article we review the development
of theories that predicted such chiral symmetry breaking and classified the possible topological many-
body ground states, and the observations in recent experiments that are in reasonable agreement with
these theories.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction to chiral graphene

Success in exfoliating monolayer and few-layer graphene sheets
from bulk graphite, combined with progress in their epitaxial
growth, has opened up a rich new topic in two-dimensional elec-
tron systems (2DES) [1]. Graphene 2DES are remarkable for several
different reasons. The fact that they are truly two dimensional
on an atomic length scale elevates 2DES physics from the low-
temperature world to the room-temperature world. Furthermore,
they are accurately described by very simple models over very wide
energy ranges and yet have electronic properties that can be quali-
tatively altered simply by stacking them in different arrangements,
and by adjusting external gate voltages or magnetic fields. Lastly
but not the least, it is relatively easy to access graphene samples
and to purify them, which practically promotes the experimental
examinations of fascinating theories on graphene 2DES.

The basic building block of all graphene 2DES is the isolated
monolayer, which is described by a massless Dirac k · p Hamilto-
nian over a wide energy range [1]. Special for graphene, the Dirac
model is massless, with two Weyl points [2] of opposite chirali-
ties located at valley K and K′, i.e., the two inequivalent Brillouin
zone corners. The massless Dirac model has linear dispersions
and chiral quasiparticles, and in the graphene case the chirality
refers to the alignment between the direction of k · p momentum
and the direction of pseudospin associated with the A/B sublattice
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degree-of-freedom of graphene’s honeycomb lattice. Intriguingly,
the two Weyl points at valley K and K′ are protected by the trans-
lational symmetry, a chiral symmetry, and a Berry phase ±�. We
will elaborate more on these two features below.

When N honeycomb graphene layers are stacked, electronic
properties are strongly modified in a way that is controlled by
the specific stacking arrangement [1]. It turns out that among all
the stacking possibilities, only the Rhombohedral (ABC or chiral)
arrangement [3–5] inherits and extends the most interesting fea-
tures of monolayer graphene, as we now explain [5]. (i) There are
two low energy sublattice sites, as the other sublattice site ener-
gies are repelled from the Fermi level by the interlayer hopping �1
and thus irrelevant at low energies, as shown in Fig. 1. This sug-
gests that a two-band model provides a useful tool to describe the
long-wavelength physics. (ii) The low-energy sublattice sites are
localized in the outermost layers, at A1 and BN, and can be sepa-
rated energetically by an electric field perpendicular to the film.
(iii) Hopping between low-energy sites via high-energy states is
an N-step process which leads to ±pN dispersions in conduction
and valence bands, and sublattice pseudospin chirality N (or Berry
phase N�). (iv) The low-energy bands are increasingly flat for larger
N, at least when weak remote hopping processes are neglected, and
the opportunity for interesting interaction and disorder physics is
therefore stronger. Consequently, in the simplified chiral model,
the density-of-states �(E) ∼ E(2−N)/N diverges as E approaches zero
for N > 2 whereas it remains finite for N = 2 and vanishes for N = 1
(these properties also have some relevance to more general stack-
ing arrangements since the low-energy Hamiltonian of a multilayer
with any type of stacking can always be chiral-decomposed [3] to a
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Fig. 1. Schematic electronic unit-cell structures of few-layer graphene. (a)–(c) Rhombohedral (ABC) stacked graphene layers. The sublattices coupled by the strongest
interlayer bonds characterized by the vertical �1 hopping parameter are indicated by shading and have little weight in the low-energy effective states. Both the monolayer
and the bilayer can be viewed as either Rhombohedral (ABC) or Bernal (AB) stacked graphene. (d) Bernal (ABA) stacked trilayer graphene for comparison.

Figures adapted from Ref. [6]. The corresponding real-space stacking structures can be found in Ref. [1].

direct sum of ABC-stacked layers. Monolayer and bilayer graphene
can be viewed as ABC-stacked few-layers with N = 1 and N = 2,
respectively).

We refer the family of ABC-stacked N-layer graphene collec-
tively as the chiral 2DES. It follows the properties (i)–(iv) that the
electronic properties of N-layer chiral 2DES can be well described
by k · p band Hamiltonians [4,5]

HN = (v0p)N

(−�1)N−1
[cos(N�p)�x + sin(N�p)�y]. (1)

We have used the notation cos �p = �zpx/p and sin �p = py/p where
�z = ±1 labels K and K′ valleys. The Pauli matrices � act on a pseu-
dospin degree-of-freedom, i.e., the two low-energy sublattices A1
and BN. We choose the positive and negative eigenstates of �z to
denote BN (bottom layer) and A1 (top layer), respectively. The Pauli
matrices s will be reserved to denote the electron spin. v0∼106 m/s
is the Fermi velocity in graphene, and �1 ∼ 0.4 eV is the nearest
neighbor interlayer hopping energy. Neutral chiral 2DES with N > 1
has been proved to be fertile ground for new many-body physics
[5–7]. Because of the large density-of-states and the N� Berry
phases near low energy band-contact points, such 2DES at zero
external fields are susceptible to chiral symmetry breaking, leading
to a family of gapped spontaneous quantum Hall states distin-
guished by valley and spin dependent quantized Hall conductivities
[7]. In these states, each spin-valley flavor spontaneously trans-
fers charge between layers [7–10]. Particularly in high mobility
suspended bilayers [11], reproducible experimental observations
[12–19] are in reasonable agreement with original theoretical pre-
dictions [7–10], both of which will be reviewed in this article.

2. Semimetals with protected Fermi points

Notably, the Fermi surface consists of two band touching points
at K and K′ for charge neutral chiral 2DES, which are indeed pro-
tected. As implied by Eq. (1), the layer pseudospin rotates N times
faster than the momentum orientation angle. This amounts to
acquiring a Berry phase N� when a quasiparticle circles one of the
band-contact points once [4,5]. The Berry phases are opposite for
electron and hole bands, and for K and K′ valleys. The quantization
of Berry phase, instead of being accidental, is directly dictated by
the following chiral (sublattice) symmetry [20,21]

{HN, �z} = 0. (2)

This chiral symmetry requires that at any momentum p a state with
energy E must have a partner state with energy −E. The gapless
band-contact nature of the spectra of Hamiltonians (1) is protected
by the chiral symmetry, since any loop enclosing one band touch-
ing point has a nontrivial Berry phase ±N� (a topological winding
number N) and is thus not contractible. One can always redefine the
zero energy at each p to respect the chiral symmetry if a h( p)�0
term is introduced to Eq. (1). In this case, at each p the eigenstates

do not alter and the Berry connection remains the same. The chiral
symmetry is also robust to any perturbation proportional to �x,y. A
notable example is the trigonal warping effect [4,5,22,23], in which
the additional �x,y terms, instead of gapping a spectrum, only split
a band-contact point with Berry phase N� into Weyl points with
Berry phase ±� each and N� in total [23].

However, the chiral symmetry is broken and the energy spec-
trum acquires a gap (2m at p = 0) in the presence of a m�z term
[23]. In this case, at each p the eigenstates becomes pseudospin
polarized and the two monopoles at p = 0 spread out near the two
valley centers, producing substantial momentum-space Berry cur-
vatures. Of course, even in the presence of the chiral symmetry,
the band-contact points can be gapped out, if gauge symmetry or
translational symmetry are broken. As two examples, a supercon-
ducting gap may open when a chiral 2DES is in proximity to a BCS
superconductor substrate or electrode [24,25]; the K and K′ valleys
may couple to each other and become gapped in pair annihilation
by Kekulé pattern of bond distortions [26,27]. Nevertheless, our
focus will be the chiral symmetry breaking and spontaneous gap
(mass) generation [7] that is driven by electron-electron interac-
tions [8–10].

3. Spontaneous symmetry breaking

Because of the large density-of-states and the N� Berry phases
near low-energy band touching points, chiral 2DES with N > 1 at
zero external fields are strongly susceptible to broken symme-
try states [7,28–31]. It is of interesting to determine whether
the layer pseudospin orientations in model (1) will be driven
out-of-plane or acquire an in-plane distortion in the presence
of electron-electron interactions [8,32–35]. This amounts to ask-
ing for each spin-valley flavor whether the chiral symmetry or
the rotational symmetry will be spontaneously broken. In this
section we review perturbative renormalization group (PRG) anal-
ysis [9,28,29,32,36–46], in which lattice effects are completely
ignored and the long-range of the Coulomb interaction is not
treated explicitly. The continuum approach is strongly motivated
by the low-density of strongly correlated electrons. The use of
short-range interactions is crudely justified [44] by appealing
to screening considerations, and arguing that the momentum-
independent interaction parameters represent an average over the
relevant portion of momentum space. Note that the length scale,
related to the higher energy cutoff ∼�1 = 400 meV, is more than
10 times of the graphene lattice constant a. We therefore empha-
size [44] that unlike the Hubbard model where the short-range
interactions are the on-site repulsions, the short-range interactions
approximation below correctly takes into account the long-range
character of Coulomb interactions implicitly. In our view models
in which interactions are cut off at atomic length scales [38,43],
although technically interesting, are unlikely to be relevant to few-
layer graphene.
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