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a b s t r a c t

Two-dimensional materials were first isolated no longer than ten years ago, and a comprehensive under-
standing of their properties under non-planar shapes is still being developed. Strictly speaking, the
theoretical study of the properties of graphene and other two-dimensional materials is the most com-
plete for planar structures and for structures with small deformations from planarity. The opposite limit
of large deformations is yet to be studied comprehensively but that limit is extremely relevant because
it determines material properties near the point of failure. We are exploring uses for discrete differen-
tial geometry within the context of graphene and other two-dimensional materials, and these concepts
appear promising in linking materials properties to shape regardless of how large a given material defor-
mation is. A brief account of additional contributions arising from our group to two-dimensional materials
that include graphene, stanene and phosphorene is provided towards the end of this manuscript.

© 2015 Elsevier B.V. All rights reserved.

Geometry is a pillar of Science, and many physical theories are
decidedly geometric [1]. This manuscript provides an overview
of recent developments towards linking the properties of two-
dimensional materials to a given arbitrary shape, where shape is
understood as the local two-dimensional geometry of atom-thin
materials that are embedded on a three-dimensional space. The
unifying point of the description concerns the introduction of a dis-
crete geometry to deal with two-dimensional materials while fully
preserving their atomistic information.

Thus, we showcase here a set of geometrical principles that
apply to nets, where a net is a discrete surface or a mesh. We iden-
tify two-dimensional materials with meshes, and apply precepts
from a branch of Mathematics [2] that deals with discrete surfaces.
We have presented a number of results in linking this geometry to
materials properties already [3–7]. This subject has contributions
from other teams as well [8–10].
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Graphene and other 2-D materials provide a stage to fur-
ther our understanding of Physics. Perhaps the most natural
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connection to be studied concerns the creation of gauge fields
on effective Dirac particles in 2+1 dimensions as the geometry
evolves from a reference, planar shape [11–13], to be addressed
next.

The starting point for us was the analysis of strain created
by a scanning tunneling microscope (STM) on graphene [18].
There is a theory laid out on a structural continuum [22,11–17]
that correlates structural deformations to mechanically-induced
gauges on Dirac fermions in 2+1 dimensions. These effective
Dirac fermions arise from a first nearest neighbor tight-binding
description of �-electrons on graphene at low energies. Changes
in distances arising from a structural deformation are estimated
from a continuum model of the distortion, and these changes in
distances alter the magnitude of the tight-binding hopping terms
locally.

The formulation is inherently semi-classical, in the sense that
the underlying dynamics is that of pseudospins (which strictly
speaking are only valid on the ideal non-deformed crystalline struc-
ture) and the gauge fields produced by mechanical deformations
induce local modifications to the �-electron pseudospin Hamilto-
nian. We estimated gauge fields employing that formalism [11–13]
but this question quickly came up:

1. An STM can tell individual atoms. Can one rewrite the theory
expressed on a continuum structure to reflect such atomistic
nature? What do we learn when the theory is laid out this way
that is different from the continuum formalism?
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This paper contains three sections that are somehow inde-
pendent: (1) Its main thrust is the description of the coupling of
finite displacements to a semiclassical pseudospin dynamics of �-
electrons on graphene in which we attempt to provide an answer to
the question above (pages 2–5). (2) We then provide a description
of a discrete geometry that applies to arbitrary two-dimensional
materials (pages 5–7). (3) The document ends by briefly mention-
ing other developments in graphene and other materials in which
we have been involved (pages 8–10).

1. A lattice gauge field theory for Dirac fermions in
graphene

The interplay among the electronic and mechanical properties of
graphene membranes remains under experimental and theoretical
investigation [11–13,19–23], and an insightful picture of the effects
of deformations employs gauge fields that influence the dynamics
of charge carriers [11–13,21,22].

The formulation is inherently semi-classical and takes pseu-
dospin hamiltonians as the main object, which strictly speaking
are only valid on the ideal non-deformed crystalline struc-
ture, with gauge fields arising from slow-varying mechanical
deformations providing local modifications to the said Hamilto-
nian.

But graphene can sustain elastic deformations as large as
20% [24] and using this picture, the resulting pseudo-magnetic
fields are much larger than those magnetic fields available in
state-of-the-art experimental facilities. The presence of a pseudo-
magnetic field is observed via broad Landau levels (LLs) in strained
graphene nanobubbles on a metal substrate [25]. In addition to
the pseudo-magnetic vector potential As, strain also induces a
scalar deformation potential Es [22,26,27] that affects the electron
dynamics in non-trivial ways. Part of our motivation was to recon-
cile the experimental results that can be obtained when the lattice
is largely deformed, with a theory that by construction applies
to small deformations. What we accomplished is a close view at
the inner workings of this theory that has led to unique insights,
and a quantitative understanding of “slowly varying deformations”
within the context of this theory. Our formulation brings to the
spotlight some of the inherent assumptions on the prevailing the-
oretical framework.

The underlying assumptions of the theory expressed on a struc-
tural continuum are expressed in the following sentence: “If a
mechanical strain varies smoothly on the scale of interatomic dis-
tances, it does not break sublattice symmetry but rather deforms
the Brillouin zone in such a way that the Dirac cones located in
graphene at points K and K′ are shifted in opposite directions [12].”

Previous statement tells us that – provided strain preserves
sublattice symmetry – one can understand the effects of mechan-
ical strain on the electronic structure in terms of a semiclassical
approach, in which mechanical strain induces the spatially-varying
gauge fields Bs(r) = ∇ × As(r) and Es(r) into a spatially-varying pseu-
dospin Hamiltonian Hps(q, r), where Hps(q) is the low-energy
expansion of the Hamiltonian in reciprocal space in the absence of
strain. This semiclassical approximation is justified when the strain
extends over many unit cells and it preserves sublattice symmetry
[12,13,22], and many of the equations on this Section will help us
keep track of said sublattice symmetry.

Evidently, it is possible to determine the electronic proper-
ties directly from a tight-binding Hamiltonian H in real space,
without resorting to the semiclassical approximation and without
imposing a sublattice symmetry a priori. That is, while the semiclas-
sical Hps(q, r) is defined in reciprocal space (thus assuming some
reasonable preservation of crystalline order), the tight-binding
Hamiltonian H in real space is more general and can be used for

Fig. 1. (a) Definitions of geometrical parameters in a unit cell. (b) Sublattice sym-
metry relates to how pairs of nearest-neighbor vectors (either in thick, or dashed
lines) are modified due to strain. These vectors change by �� j and �� ′

j
upon strain

(j = 1, 2). Relative displacements of neighboring atoms lead to modified lattice vec-
tors; the choice of renormalized lattice vectors will be unique only to the extent to
which sublattice symmetry is preserved: �� ′

j
� �� j .

membranes with arbitrary spatial distribution and magnitude of
the strain.

In the previous formulation of the theory both As and Es are
expressed in terms of a continuous displacement field u(x, y)
obtained within first-order continuum elasticity (CE) [11–13,22]. It
is not possible to assess sublattice symmetry on a continuum media,
and therefore proper phase conjugation of pseudospin Hamiltoni-
ans becomes an implicit assumption of that theory.

But the only way to know whether the strain preserves
sublattice symmetry [12] implies analyzing relative atomic dis-
placements in arbitrary structural distortions that could be
captured directly from experiment [28], or from molecular dynam-
ics simulations.

Let us start by considering the unit cell before (Fig. 1(a)) and after
arbitrary strain has been applied (Fig. 1(b)). The lattice vectors and
the vectors joining atoms are given by (Fig. 1(a)):
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before the deformation takes place. When a deformation is applied
(Fig. 1(b)) the two off-diagonal terms making up the pseudospin
tight-binding Hamiltonian will be:

−
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and
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) · k

,

where t is the hopping term, ıt is its change upon strain to be
explicitly defined later on, and k is the crystal momentum.

Each local pseudospin Hamiltonian will only have physical
meaning when it is properly conjugated, which implies sublattice
symmetry holds. This happens at unit cells where:

�� ′
j � ��j (j = 1, 2). (3)
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