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a b s t r a c t

The edges of graphene and graphene like systems can host localized states with evanescent wave function
with properties radically different from those of the Dirac electrons in bulk. This happens in a variety
of situations, that are reviewed here. First, zigzag edges host a set of localized non-dispersive state at
the Dirac energy. At half filling, it is expected that these states are prone to ferromagnetic instability,
causing a very interesting type of edge ferromagnetism. Second, graphene under the influence of external
perturbations can host a variety of topological insulating phases, including the conventional quantum
Hall effect, the quantum anomalous Hall (QAH) and the quantum spin Hall phase, in all of which phases
conduction can only take place through topologically protected edge states. Here we provide an unified
vision of the properties of all these edge states, examined under the light of the same one orbital tight-
binding model. We consider the combined action of interactions, spin–orbit coupling and magnetic field,
which produces a wealth of different physical phenomena. We briefly address what has been actually
observed experimentally.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Graphene has been the most studied material of the last decade.
Its extraordinary electronic and mechanical properties came as a
great surprise: the existence of stable two dimensional crystals
was customarily dismissed, and surfaces had been identified as the
source of reduction of electronic mobility, due to defects and adsor-
bate trapping. The age of graphene was initiated by the observation
of the field effect transistors [1], and more strikingly the quantum
Hall effect [2,3], a phenomena that had only been observed in high
mobility semiconductor heterostructures [4].

Graphene is a two dimensional lattice of carbon atoms that form
a honeycomb lattice, that can also be described as a triangular lat-
tice with a two atom basis, displayed with different colors in Fig. 1.
This makes of the graphene honeycomb lattice a bipartite lattice, a
fact that strongly influences its electronic properties. The electronic
properties of graphene can be described in terms of a very ele-
gant and simple picture [5,6] by means of the Dirac equation. Close
to the Fermi energy, electrons in graphene behave as two dimen-
sional relativistic massless particles, the so-called Dirac electrons.
The energy bands are linear, E± = ±�vF |�k|, so that the three dimen-
sional plot of these two dimensional bands produces the so-called
Dirac cones. The Brillouin zone associated to the honeycomb lattice
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is also hexagonal, and has a copy of these Dirac bands, located at
the corners of the hexagon. Only two of these so-called valleys are
actually non-equivalent. As a result, electrons in graphene have an
additional isospin, the valley.

All these properties are also expected for a wider class of mate-
rial systems, the graphene-like materials, that can also be described
in terms of electrons moving in a honeycomb lattice with just
one orbital per site. An incomplete list of graphene-like materials
includes Silicene [7], Germanene [8], Stanene [9], metallic organic
framework [10], hydrogenated Bi(1 1 1) [11], and artificial graphene
lattices [12].

The purpose of this paper is to review what is known about the
fate of the Dirac electrons at the edges, the boundaries of these oth-
erwise endless two dimensional crystals. In some instances Dirac
electrons simply scatter at the edges but, very often, graphene hosts
edge states, i.e., states whose wave function are evanescent in the
direction perpendicular to the edge, and itinerant in the parallel
direction. Their energies are at, or close to, the Dirac point, and
very often their wave functions have peculiar properties, such as
sublattice polarization, spin polarization or net spin current, just
to mention a few. Edge states are particularly important when
graphene is driven into what nowadays are known as topological
insulator phases [14]. Historically, the first example of this phase is
associated to the quantum Hall effect (QHE) [4], observed in high
mobility two dimensional electron gases in semiconductor het-
erostructures. In these systems, application of a sufficiently large
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Fig. 1. (a) Honeycomb lattice showing two types of edge, zigzag and armchair. The
two triangular sublattices, A and B, are displayed with fake color, red and blue. The
vectors of the Bravais lattice are also shown. (b) Brillouin zone associated to the
honeycomb lattice, including the plot of the two energy bands forming Dirac cones
in the neighborhood of K and K′ points (see text). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of the article.)

magnetic field produces a discrete spectrum of Landau levels (LL)
in the bulk states. This leads to an insulating state when the Fermi
energy lies in between the LL. Importantly, in that situation the
edges host chiral (or unidirectional) states that are ideal quantum
conductors [15,16], and are responsible for the perfect quantization
of the Hall conductance [4].

Soon after the discovery of the QHE, it was shown by Thou-
less and coworkers (TKNN [17]) that the Hall conductance could be
expressed, using the conventional linear response theory, in terms
of a topological invariant [17,18], the so-called Chern number C,
associated to the Berry curvature of wave functions of the bulk
states.

The prediction of other insulating phases with quantized edge
transport due to topological order without a net magnetic field is
one of the greatest successes of modern condensed matter theory.
This includes the quantum spin Hall (QSH) [19,20], and the quan-
tum anomalous Hall (QAH) phases, proposed in a seminal paper by
Haldane [21] where he showed how spinless fermions moving in a
honeycomb lattice exposed to a periodic magnetic field with no net
flux would display quantized Hall conductance, with topologically
protected edge states.

The QSH phase was proposed by Kane and Mele [19,20]. They
found that intrinsic spin–orbit coupling would open a gap in
graphene with non-trivial topological order that would come
accompanied by spin filtered [19] edge states robust with respect to
time reversal perturbations. Interestingly, the description of elec-
trons with spin–orbit coupling in graphene was mathematically
identical to two independent copies of the Haldane model, one
per spin. They also introduced a Z2 topological classification [20]
of time-reversal invariant two dimensional systems, analogous to
the TKNN classification of quantum Hall states.

Subsequent computational work [22,23] showed that the mag-
nitude of the intrinsic spin–orbit coupling in graphene was so small
that would render the observation of the QSH phase almost impos-
sible. However, there are graphene-like materials, such as silicene
and other group IV honeycomb crystals, for which the Kane Mele
model applies [24] and for which these predictions are relevant.
More importantly, there is quite strong experimental evidence that
the QSH phase has been observed both in HgTe quantum wells
[25] and inverted InAs/GaSb quantum wells [26], both theoretically
predicted to be QSH insulators [27,28]

The role of Coulomb interactions can also affect dramatically
the properties of some of these edge states, in particular, when-
ever edge states produce a large density of states at the Fermi
energy, that makes them prone to Stoner instabilities. This is the
case of zigzag edge states for which ferromagnetic order is expected
[29–38]. The interplay between this magnetism, spin–orbit interac-
tions [39–42] and the quantum Hall phases [43] is a very fascinating
area of research that we also review here.

Apart from the previous examples, interfacial effects can also
create topologically protected states. Some examples are driven by
domain boundaries between gapped graphene [44,45], local elec-
tric edge fields [46,47] or interfaces between antiferromagnetic
graphene and a superconductor [48].

The rest of this review is organized as follows. In Section 2 we
review the tight-binding model that describes both the 2D and edge
states in graphene, including the spin–orbit coupling and coupling
to the magnetic field, responsible of the quantum spin Hall and
quantum Hall phases. In Section 3 we review the properties of the
zigzag edge states, including their connection with the bipartite
character of the honeycomb lattice as well as the ferromagnetic
order associated to Coulomb interactions. In Sections 4, 5 and 6
we review the quantum Hall, quantum anomalous Hall and quan-
tum spin Hall edge states, respectively. In Section 7 we review the
effect of Coulomb interactions on the spin-filtered edge states in
graphene. In Section 8 we briefly review the experimental situation
and in Section 9 we wrap up with some general conclusions.

2. Tight binding model for graphene and graphene-like
materials

A material is said to be graphene-like if its quantum states can be
described in terms of a tight-binding model that describes electrons
hopping in a honeycomb lattice with a single state per site. In the
case of graphene, Silicene, etc., the site would be a group IV atom,
and the state would be pz orbital. Within this model, electrons can
hop to their first neighbor atoms, with a hopping amplitude t, that
takes a value of t � 2.7 eV [5] in the case of graphene. The tight-
binding approach can also include the effect of magnetic fields by
means of the so-called Peierls substitution. Basically, the effect of
the magnetic field consists on multiplying by a phase the hopping
integrals t˛,ˇ → t˛,ˇei�˛,ˇ where

�˛,ˇ = e

�

∫ ˇ

˛

�A · d�r (1)

and �A is the vector potential applied to the system.

2.1. Bloch and Dirac Hamiltonians

The honeycomb lattice of bulk graphene can be treated as two
interpenetrating triangular lattices, that we label as A and B and
assign them the red and blue color in Fig. 1. Thus, the honeycomb
lattice is a triangular lattice with two atoms per unit cell that nat-
urally leads, within the simple TB model, to a Bloch Hamiltonian of
dimension two:

H0(�k) =
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where t is the first neighbor hopping, � is the so-called mass
term that is present whenever there is a sublattice symmetry
breaking perturbation and it is assumed to vanish in the case of
freestanding graphene, f (�k) = 1 + ei�k · �a1 + ei�k · �a2 is the form factor
associated to first neighbor hopping in the honeycomb lattice, and
�a1 = a

2

(√
3, 1
)

, �a2 = a
2 (

√
3, −1) where a is the unit cell spacing,

which coincides with the second neighbor distance and it satisfies
the relation a =

√
3aCC with the first neighbor distance. The result-

ing energy bands, �±(�k) = ±
√

|�/2|2 + |tf (�k|2 are shown in Fig. 1b
for the � = 0 case relevant for graphene, and feature the so-called
Dirac cones at the corners of the hexagonal Brillouin Zone. Valence
and conduction band meet at the so-called Dirac point, which coin-
cides with the Fermi energy at half filling. At this point we introduce
the concept of sublattice as a pseudo spin degree of freedom. For
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