

Contents lists available at ScienceDirect

# Synthetic Metals

journal homepage: www.elsevier.com/locate/synmet



# Synthesis of novel dyes having EDOT-containing oligothiophenes as $\pi$ -linker for panchromatic dye-sensitized solar cells



Ichiro Imae\*, Keisuke Korai, Yousuke Ooyama, Kenji Komaguchi, Yutaka Harima

Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan

#### ARTICLE INFO

Article history: Received 19 May 2015 Received in revised form 5 June 2015 Accepted 9 June 2015 Available online 23 June 2015

Keywords: Dye-sensitized solar cells Donor- $\pi$ -acceptor (D- $\pi$ -A) dyes Oligothiophene 3,4-Ethylenedioxythiophene (EDOT)

#### ABSTRACT

Novel donor– $\pi$ –acceptor (D– $\pi$ –A) dyes composed of oligothiophenes having 3,4-ethylenedioxythiophene (EDOT) as a  $\pi$ -linker have been synthesized. The introduction of EDOT unit in oligothiophenes and the elongation of  $\pi$ -conjugation length of oligothiophenes led to a red-shift of absorption bands of the D– $\pi$ –A dyes. It was found that a D– $\pi$ –A dye having EDOT-containing quaterthiophene exhibited the excellent light-harvesting ability up to 800 nm.

©2015 Elsevier B.V. All rights reserved.

### 1. Introduction

Since the first report in 1991 by O'Regan and Grätzel [1], dyesensitized solar cells (DSSCs) have attracted a considerable attention due to their high conversion efficiency of incident light to electricity and low production cost [2]. In order to improve the power conversion efficiency, many researches have been focused on the development of novel dyes [3]. Since donor- $\pi$ -acceptor  $(D-\pi-A)$  dyes consisting of an electron donor (D) and an electron acceptor (A) linked through a  $\pi$ -conjugated bridge ( $\pi$ -linker) possess high molar absorption coefficients and their electronic properties can be easily tuned by molecular modifications, many types of D- $\pi$ -A dyes have been enthusiastically synthesized [4]. The role of  $\pi$ -linker is not only to facilitate an intramolecular charge transport from D unit to A unit, but also to enhance a lightharvesting ability. In view of this, a variety of  $\pi$ -conjugated moieties such as vinylene, phenylene, and thienylene have been developed as  $\pi$ -linkers. Among them, oligothiophene is a strong candidate of  $\pi$ -linker in D- $\pi$ -A dyes for DSSCs with high performances, because of the versatility of synthetic design, the high coplanarity responsible for the elongation of  $\pi$ -conjugation length, and the tunability of light-harvesting properties by controlling the chain length of oligothiophenes and/or by introducing substituents. For example, Tan et al. synthesized  $D-\pi-A$  dyes composed of triphenylamine as a D unit, cyanoacrylic acid as an A unit, and oligothiophenes with different chain lengths (thiophene monomer, trimer and hexamer) as  $\pi$ -linker and succeeded in the adjustment of optical, electrochemical, and photovoltaic properties by optimizing their chemical structures of oligothiophenes [5]. We also have synthesized a new family of oligothiophene derivatives partially containing 3,4-ethylenedioxythiophene (EDOT) unit and found that the introduction of EDOT unit into oligothiophenes induced a remarkable red-shift of absorption bands, together with an enhanced coplanarity and improved charge transport properties [6].

In the present paper, we describe the synthesis and characterization of two novel D- $\pi$ -A dyes having EDOT-containing oligothiophenes (Fig. 1) and their application to photosensitizers in DSSCs. Although D- $\pi$ -A dyes having EDOT or EDOT-containing bithiophenes were already reported [7], there are no reports on photosensitizing dyes having oligothiophenes with longer  $\pi$ -conjugated chains such as trimer or tetramer. It is expected that the introduction of EDOT unit in the oligothiophenes with longer  $\pi$ -conjugation length will enhance the light-harvesting ability in the visible region.

## 2. Experimental

#### 2.1. Materials

n-Hexane, toluene, tetrahydrofuran (THF), N, N-dimethylformamide (DMF), acetic acid (AcOH), chloroform (CHCl $_3$ ), dichloromethane, and acetonitrile were purified by standard methods and used immediately after purification. Tetrabutylammonium perchlorate (TBAP) and N-bromosuccinimide (NBS) were purified by recrystallization from ethanol and benzene, respectively, and dried

<sup>\*</sup> Corresponding author. Fax: +81 82 424 5494. E-mail address: imae@hiroshima-u.ac.jp (I. Imae).

**Fig. 1.** Chemical structures of **PE3T** (n=1) and **PE4T** (n=2).

under vacuum. EDOT, 2-thiopheneboronic acid, 4-(*N*,*N*-diphenylamino) phenylboronic acid, 5-formyl-2-thiopheneboronic acid, and cyanoacetic acid were purchased from Tokyo Chemical Industry and used without further purification. Tetrakis(triphenylphosphine) palladium(0) (Pd(PPh<sub>3</sub>)<sub>4</sub>) purchased from Kanto Chemical was used as the catalyst of the Suzuki reaction.

#### 2.2. Synthesis

Synthetic routes of **PE3T** and **PE4T** are shown in Scheme 1 and the detailed synthetic processes are described below. 2,5-Dibromo-3,4-ethylenedioxythiophene and 3',4'-ethylenedioxy-2,2':5',2"-terthiophene (1) were synthesized according to our previous report [6a].

2.2.1. 5,5"-Dibromo-3',4'-ethylenedioxy-2,2':5',2"-terthiophene (2). To a CHCl<sub>3</sub>/AcOH (50 mL/50 mL) solution of **1** (0.84 g, 2.75 mmol), NBS (0.97 g, 5.46 mmol) was slowly added in the dark at  $-10\,^{\circ}\text{C}$ . The reaction mixture was stirred in the dark at  $-10\,^{\circ}\text{C}$  for 2 h. The reaction mixture was poured into water and extracted two times with CHCl<sub>3</sub> (100 mL each). The combined organic extracts were washed with Na<sub>2</sub>CO<sub>3</sub> aq. and water and dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was removed by a rotary evaporator. Compound **2** (0.59 g, 1.27 mmol) was obtained as a yellow needle crystal after the purification by recrystallization from *n*-hexane. Yield: 90%.  $^1\text{H}$  NMR (500 MHz, (CD<sub>3</sub>)<sub>2</sub>CO,  $\delta$ , ppm): 4.49 (s, 4H,

OCH<sub>2</sub>CH<sub>2</sub>O), 7.04 (d, J=4.00 Hz, 2H, thienylene-**H**), 7.12 (d, J=4.00 Hz, 2H, thienylene-**H**). HRMS (EI) m/z calcd for  $C_{14}H_8Br_2O_2S_3$  461.8053 (M<sup>+</sup>), found 461.8053 (M<sup>+</sup>).

5-[4-(N,N-Diphenylamino)phenyl]-5"-bromo-3',4'ethylenedioxy-2,2':5',2"-terthiophene (3). Under an argon atmosphere, a mixture of **2** (1.15 g, 2.48 mmol), 4-(*N*,*N*diphenylamino)phenylboronic acid (0.70 g, 2.48 mmol), and Pd  $(PPh_3)_4$  (0.27 g. 0.24 mmol) was dissolved in THF (10 mL). To this solution, Na<sub>2</sub>CO<sub>3</sub> (0.53 g, 5.00 mmol) in water (5 mL) was added. The resulting solution was stirred at 80 °C for 24 h. The mixture was extracted with dichloromethane. The organic extract was dried over Na<sub>2</sub>SO<sub>4</sub>. After removal of the solvent, the residue was purified by a column chromatography (silica gel, *n*-hexane/ dichloromethane (3/1)). Compound 3 (0.56 g, 0.88 mmol) was obtained as a yellow powder. Yield: 36%. <sup>1</sup>H NMR (500 MHz,  $(CD_3)_2CO$ ,  $\delta$ , ppm): 4.50 (s, 4H, OCH<sub>2</sub>CH<sub>2</sub>O), 7.05 (d, I = 3.85 Hz, 1H, thienylene-**H**), 7.05 (d, J = 8.74 Hz, 2H, phenylene-**H**), 7.08–7.12 (m, 6H, phenyl-**H**), 7.12 (d, J = 3.85 Hz, 1H, thienylene-**H**), 7.26 (d, J = 3.85 Hz, 1H, thienylene-**H**), 7.31–7.36 (m, 4H, phenyl-**H**), 7.35 (d,  $J = 3.85 \, \text{Hz}$ , 1H, thienylene-**H**), 7.59 (d,  $J = 8.74 \, \text{Hz}$ , 2H, phenylene-**H**). HRMS (EI) m/z calcd for  $C_{32}H_{22}BrNO_2S_3$  626.9996 (M<sup>+</sup>), found 626.9988 (M<sup>+</sup>).

2.2.3. 5-[4-(N,N-Diphenylamino)phenyl]-5"-formyl-3',4'-ethylenedioxy-2,2':5',2"-terthiophene (4). Under an argon atmosphere, a mixture of **3** (0.24 g, 0.38 mmol) and magnesium (0.12 g, 4.77 mmol) was dissolved in THF (5 mL). After exothermic reaction was completed, DMF (2 mL) was added and stirred at room temperature for 2 h. The mixture was extracted with dichloromethane. The organic extract was dried over Na<sub>2</sub>SO<sub>4</sub>. After removal of the solvent, the residue was purified by a column chromatography (silica gel, dichloromethane). Compound **4** (67 mg, 0.11 mmol) was obtained as a red powder. Yield: 31%.  $^{1}$ H NMR (500 MHz, (CD<sub>3</sub>)<sub>2</sub>CO,  $\delta$ , ppm): 4.53–4.60 (m, 4H, OCH<sub>2</sub>CH<sub>2</sub>O), 7.05 (d, J = 8.80 Hz, 2H, phenylene-**H**), 7.09–7.13 (m, 6H, phenyl-**H**),

Scheme 1. Synthetic route of PE3T and PE4T: (i) NBS, THF/AcOH (1/1), r.t., 2 h; (ii) 2-thiopheneboronic acid, Pd(PPh<sub>3</sub>)<sub>4</sub>, Na<sub>2</sub>CO<sub>3</sub>, THF, reflux, 16 h; (iii) NBS, CHCl<sub>3</sub>/AcOH (1/1), -10 °C, 2 h; (iv) 4-(N,N-diphenylamino) phenylboronic acid, Pd(PPh<sub>3</sub>)<sub>4</sub>, Na<sub>2</sub>CO<sub>3</sub>, THF, reflux, 24 h; (v) Mg, DMF, r.t., 2 h; (vi) 5-formyl-2-thiopheneboronic acid, Pd(PPh<sub>3</sub>)<sub>4</sub>, Na<sub>2</sub>CO<sub>3</sub>, THF, reflux, 24 h; (vii) cyanoacetic acid, ammonium acetate, reflux, 16 h.

# Download English Version:

# https://daneshyari.com/en/article/1440450

Download Persian Version:

 $\underline{https://daneshyari.com/article/1440450}$ 

Daneshyari.com