Contents lists available at ScienceDirect

Synthetic Metals

journal homepage: www.elsevier.com/locate/synmet

Optimized single molecule magnet in double-decker hetero-metallic complexes

Tian-Qi Liu, Peng-Fei Yan, Fang Luan, Jing-Wen Sun, Guang-Ming Li*

Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, No. 74, Xuefu Road, Nangang District, Harbin, Heilongjiang 150080, PR China

ARTICLE INFO

Article history: Received 2 June 2015 Received in revised form 2 August 2015 Accepted 4 August 2015 Available online 28 August 2015

Keywords: Salen-type Dysprosium complex Double-decker Single-molecule magnets β-diketonate

1. Introduction

The design of new single-molecule magnets (SMMs) with high energy barrier (ΔE_a) and blocking temperature (T_B) has remained an active field domain because of their potential applications in high-density magnetic memories [1-3], magnetic refrigeration [4-6] and quantum computing devices [7,8]. Among which a growing amount of Ln-based SMMs from mononuclear [9-11] to multinuclear [12-15], and to chain [16,17] have been documented. It is attributed to the large unquenched orbital angular momentum of Ln³⁺ ions which may bring significant anisotropy to the system [18–22]. In particular, the mononuclear lanthanide complexes in which the anisotropic Ln^{3+} ion lies in an axial ligand-field environment can exhibit slow relaxation of the magnetization which has been rapidly development due to the simplification of the analysis of local anisotropy [23]. It has been demonstrated that the local anisotropy of the Ln³⁺ ions lies in the ligand-field (LF) and the coordination geometry dominate magnetism of the SMMs [24,25]. Therefore, a suitable ligand may promote the anisotropic energy barrier for the mononuclear Ln-based SMMs. Previously, phthalocyanine [26,27], β -diketone [28–30] and polyoxometalate [31–33] have been proven to be particularly suitable for the synthesis of pure mononuclear Ln-based SMMs which usually reveals a double-decker structure and/or high-order single axis C_n

http://dx.doi.org/10.1016/j.synthmet.2015.08.007 0379-6779/© 2015 Elsevier B.V. All rights reserved.

ABSTRACT

Two new hetero-metallic complexes $[LnNa_2(L)_2(bta)(CH_3OH)]\cdot nH_2O\cdot mCH_3OH (Ln = Dy (1), n = 1, m = 0; Er (2), n=0, m=1)$ supported by rigid hexadentate salen-type $(H_2L=N,N'-bis(2-oxy-3-methoxybenzylidene)-1,2-phenylenediamine)$ and β -diketonate (bta=benzoyltrifluoroacetone) ligands have been designed and synthesized. Structural analysis reveals that the Ln^{3+} ion has a typical double-decker sandwich structure with a distorted bicapped triangular prism. The magnetic analysis unveils that both complexes 1 and 2 are of single molecule magnet behavior, and both of them can be regarded as rare SMMs based on the salen-type ligand with a double-decker structure.

© 2015 Elsevier B.V. All rights reserved.

 $(n \ge 3)$ defining the local symmetry. However, the use of multidentate salen-type ligand in building the pure mononuclear Lnbased SMMs is relatively rare because of the multi-coordination donors and flexible bonding modes which apt to form polynuclear lanthanide complexes [34-36]. Nevertheless, the introduction of the suitable metal and/or the secondary ligands is an effective way to obtain a SMMs which comprising a single Ln³⁺ ion based on the salen-type ligand. E.g. in 2011, Kajiwara et al. have reported a salentype ligand and salicylaldehyde complex [ZnBr(Hsal)(L)Dy(NO₃) (CH_3OH)] $(H_2L = N, N'-bis(2-oxy-3-methoxybenzylidene)-1, 3-2, 2$ dimethylpropanediamine) which shows SMMs behavior with a extremely high barrier of 333 K [37]. In 2013, Tang et al. presented two hetero-metallic complexes [DvML(OAc)₂(NO₃)]·CH₃OH $(M = Zn/Cu, H_2L = N, N'-bis(3-methoxy-salicylidene)$ cyclohexane-1,2-diamine) which reveals field-induced SMMs behavior [38]. In 2014, Kou et al. reported four dinuclear 3d-4f complexes $[M^{II}Ln^{III}(L)(DBM)_3]$ (M = Zn/Co, Ln = Dy/Y, H₂L = N,N'-dimethyl-N, *N*′-(2-hydroxy-3-methoxy-5-methyl-benzyl) ethylenediamine) which were introduced the transition metal and the secondary ligand of 1,3-diphenyl-propane-1,3-dione (DBM) to synthesis the SMMs with containing a single Dy^{3+} ion [39]. Obviously, with the introduction of the transition metals, it is usually coordinated by the N_2O_2 set of the salen-type ligand which led to the Ln^{3+} ion locate in the O₂O₂ set with an equator package structure. While it is well known that the double-decker ligands geometry for the Dy³⁺ ion would maximize the anisotropy of an oblate ion which may obtain a highly anisotropic ground state with a large $\pm m_{\rm I}$ [40]. Thus, it may be of interest to explore the salen-type double-decker

^{*} Corresponding author. Fax: +86 451 86673647. E-mail address: gmli_2000@163.com (G.-M. Li).

mononuclear lanthanide SMMs which may exhibit unusual magnetic behavior.

In view of recent important progress in mononuclear lanthanide SMMs [41-45] as well as our longstanding research on the structure and physical properties of salen-type sandwich multipledecker lanthanide complexes [46-48]. The rigid hexadentate salen-type ligand of N,N'-bis(2-oxy-3-methoxybenzylidene)-1,2phenylenediamine and benzovltrifluoroacetone were jointly employed to construct the SMMs. As a result, two new heterometallic complexes with a double-decker structure of complexes 1 and 2 have been isolated. Their crystal structures have been determined and their static and dynamic magnetic properties have been studied.

2. Experimental

2.1. Materials and instruments

All chemicals except $LnCl_3 \cdot 6H_2O$ (Ln = Dy and Er) and H_2L were obtained from commercial sources and used without further purification. LnCl₃·6H₂O was prepared by the reactions of Ln₂O₃ and hydrochloric acid in aqueous solution. The ligand H₂L was prepared according to the literature [49]. Elemental (C, H and N) analyses were performed on a PerkinElmer 2400 analyzer. FT-IR data were collected on a PerkinElmer 100 spectrophotometer by using KBr disks in the range of 4000–500 cm⁻¹. UV spectra (in methanol) were recorded on a PerkinElmer 35 spectrophotometer. Thermal analyses were carried out on a STA-6000 with a heating rate of 20 °C min⁻¹ in a temperature range from 300 °C to 800 °C in atmosphere. The Powder X-ray diffraction (PXRD) patterns were obtained with a Rigaku D/Max-3B X-ray diffractometer with Cu-K α radiation, the scanning rate is 4° /s, 2q ranging from 5 to 40° . The magnetic susceptibilities of complexes 1 and 2 were measured with a superconducting quantum interference device (SQUID) magnetometer of Quantum Design VSM. The magnetic corrections were made by using Pascal's constants.

2.2. Synthesis of $[DyNa_2(L)_2(bta)(CH_3OH)] \cdot H_2O(1)$

NaOH (0.04 g, 1 mmol) and bta (0.22 g, 1 mmol) in methanol was stirred for 5 min. Then, DyCl₃·6H₂O (0.19 g, 0.5 mmol) and H₂L (0.37 g, 1 mmol) were added to the solution and the mixture was stirred for 1 h at room temperature. Diethyl ether was allowed to diffuse slowly into the above mixture, and pale yellow single crystals of 1 suitable for single crystal X-ray diffraction experiment were obtained in about 2 days. Yield: 0.325 g (54%); Elemental analysis (%) calcd for C₅₅H₄₇N₄F₃O₁₂Na₂Dy (1221.46): C, 54.08; H, 3.88; N, 4.59. found: C, 54.02; H, 3.81; N, 4.55; IR (KBr, cm⁻¹): 3394 (w), 2923(m), 1619(s), 1480(m), 1294(s), 1184(m), 1133(m), 756(w). UV–vis [MeOH, λ]: 242, 311 and 389 nm.

2.3. Synthesis of $[ErNa_2(L)_2(bta)(CH_3OH)] \cdot CH_3OH$ (2)

Complex 2 was prepared with the identical procedure to complex **1** except DyCl₃·6H₂O was used instead of ErCl₃·6H₂O. Yield: 0.378 g (60%); Elemental analysis (%) calcd for C₅₆H₄₉N₄F₃O₁₂Na₂Er (1240.24): C, 54.23; H, 3.98; N, 4.52. found: C, 54.18; H, 3.89; N, 4.50; IR (KBr, cm⁻¹): 3407(w), 2928(m), 1619 (s), 1481(m), 1292(s), 1180(m), 1132(m), 757(w). UV-vis [MeOH, λ]: 241, 311 and 390 nm.

2.4. X-ray crystallography

X-ray single-crystal diffractions of complexes 1 and 2 were performed at 293 K on an Oxford Xcalibur Gemini Ultra diffractometer with graphite-monochromated Mo K α radiation

Table 1	
---------	--

Crystal data and structures refinement for complexes 1 and 2.

Complexes	1	2
Empirical formula	C ₅₅ H ₄₇ N ₄ F ₃ O ₁₂ Na ₂ Dy	C ₅₆ H ₄₉ N ₄ F ₃ O ₁₂ Na ₂ Er
Formula weight	1221.46	1240.24
Color	Buff	Buff
Crystal system	Monoclinic	Monoclinic
Space group	P21/c	P2 ₁ /c
a (Å)	16.384(5)	16.293(5)
b (Å)	15.625(5)	15.518(5)
c (Å)	23.554(5)	23.340(5)
α (deg)	90	90
β (deg)	117.494(4)	117.693(4)
g (deg)	90	90
V (Å ³)	5349(3)	5225(3)
Z	2	4
r_{calcd} (g cm ⁻³)	1.504	1.517
$m (mm^{-1})$	1.488	1.702
F (000)	2440	2488
R_1 , $[I > 2s (I)]^a$	0.0347	0.0313
wR ₂ , [I > 2s (I)]	0.0998	0.0773
R ₁ , (all data) ^b	0.0457	0.0396
wR ₂ , (all date)	0.1079	0.0805
GOF on F ²	1.112	1.181

^a $R_1 = \Sigma ||F_o| - |F_c||/|F_o|.$ ^b $wR_2 = [\Sigma (F_o^2 - F_c^2)^2 / i \mathcal{E} w (F_o^2)^2]^{1/2}.$

(1=0.71073 Å). The structures were solved by the direct methods and refined on F^2 by full-matrix least-squares using the SHELXTL-97 program. All non-hydrogen atoms were refined anistropically. All crystal data and refinement parameters for complexes 1 and 2 are summarized in Table 1.

3. Results and discussion

3.1. Structural descriptions of complexes 1 and 2

X-ray crystallographic analysis reveals that complexes 1 and 2 are isomorphic, and crystallized in the monoclinic space group of $P2_1/c$. In a typical structure of complex **1** (Fig. 1 left), It possesses a hetero-metallic $[DyNa_2]^{5+}$ core capped by a bta ligand and two salen-type ligands. The Dy^{3+} ion has a typical double-decker sandwich structure and is eight-coordinated by two N₂O₂ sets of two salen-type ligands. The Na1 ion is six-coordinated by five oxygen atoms from two salen-type ligands and one oxygen atom from a methanol molecule, while the Na2 ion is five-coordinated by three oxygen atoms from the top salen-type ligands and two oxygen atoms from the bta ligand. Moreover, the distances range of Dy—O bonds is 2.243 to 2.301 Å (average 2.272 Å), while the Dy—N bond lengths are in the range of 2.483 to 2.515 Å (average 2.500 Å). Further inspection of the packing arrangement reveals the shortest intermolecular Dy...Dy distances is 9.431 Å (Figure S5). According to the semiquantitative method of polytopal analysis [50,51], the coordination geometries of Dy^{3+} ion for complex 1 can be described as a distorted bicapped triangular prism (Fig. 1 right, and Table 2). It differs from the reported mixed phthalocyanine and salen-type double-decker hetero-metallic complex [KDy(pc)(L) CH₃OH] (H₂pc = metal-free phthalocyanine, $H_2L = N, N'$ -bis(2-oxy-3-methoxybenzylidene)-1,2-phenylenediamine) [52] in which the Dy³⁺ ion is a distorted square antiprism geometry (SAP) coordination polyhedron.

3.2. Magnetic properties

Direct current (dc) magnetic susceptibility measurements of complexes 1 and 2 have been carried out under a 1000 Oe dc field over the temperature range 1.8-300 K. As shown in Fig. 2 and Download English Version:

https://daneshyari.com/en/article/1440517

Download Persian Version:

https://daneshyari.com/article/1440517

Daneshyari.com