Contents lists available at ScienceDirect

Synthetic Metals

journal homepage: www.elsevier.com/locate/synmet

Nitrogen-doped carbon-coated molybdenum disulfide nanosheets for high-performance supercapacitor

SYNTHETIC METALS

MinHo Yang^{a,1}, Seung-Kyu Hwang^{b,1}, Jae-Min Jeong^a, Yun Suk Huh^b, Bong Gill Choi^{c,*}

^a Department of Nano Bio Research, National NanoFab Center (NNFC), Daejeon 305-806, Republic of Korea

^b Department of Biological Engineering, Inha University, Incheon 402-751, Republic of Korea

^c Department of Chemical Engineering, Kangwon National University, Samcheok 245-711, Republic of Korea

ARTICLE INFO

Article history: Received 7 June 2015 Received in revised form 29 August 2015 Accepted 7 September 2015 Available online 25 September 2015

Keywords: Molybdenum disulfide N-doped carbon Nanosheet Supercapacitor

ABSTRACT

Although exfoliated MoS_2 sheets have recently demonstrated their great potential for use as electrodes for supercapacitors, they suffer from poor intrinsic electrical conductivity and strong tendency for intersheet aggregation. Here, we develop a synthetic method for preparation of *N*-doped carbon-coated MoS_2 (NC-MoS_2) nanosheets composed of coating of polydopamine and a post carbonization process. Construction of carbon layers on the MoS_2 surface enables effective prevention of sheet aggregation and provide a rapid pathway for electron transfer. As-prepared NC-MoS₂ materials are then characterized by electrochemical measurements to demonstrate the superior performance of the supercapacitor electrodes. The NC-MoS₂ electrode exhibits improved electrochemical performance relative to the exfoliated MoS_2 sheets, with a high specific capacitance (158 F g⁻¹), high rate capability (83% retention), and good cycling life (89% retention) during 1000 cycles.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Supercapacitors typically store electrical charges by adsorption of electrolyte ions or reversible redox reactions onto the surface of electrode materials. These unique storage mechanisms make them attractive energy-storage systems that can deliver high power density while maintaining a long cycling life [1-3]. In this regard, the features of electrode materials, such as size, morphology, and surface functional groups are essential to achieving high-performance sueprcapacitors [4-6]. Two-dimensional (2D) graphene materials have attracted increasing attention in the development of supercapacitors owing to their large surface area, high electrical conductivity, and excellent electrochemical properties [7–10]. The great potentials of monolayer graphene have stimulated synthesis of other 2D thin materials, including metal dichalcogenides (e.g., WS₂, TiS₂, and MoS₂), oxides, and hydroxides [11–16]. These 2D dichalcogenides can be exfoliated down to a monolayer by solution-based chemical methods similar to those used in production of chemically prepared reduced graphene oxides [11,12,14].

MoS₂ nanosheets have become one of the most promising electrode materials for energy storage devices due to easy

E-mail address: bgchoi@kangwon.ac.kr (B.G. Choi).

¹ Both authors contributed equally to this work.

http://dx.doi.org/10.1016/j.synthmet.2015.09.007 0379-6779/© 2015 Elsevier B.V. All rights reserved.

accessibility for ion intercalation and high theoretical specific capacitance $(>1000 \text{ Fg}^{-1})$ [17–26]. More importantly, MoS₂ has the potential to store charges not only by formation of double layers on inter- and intra-sheet of individual MoS₂, but also via faradic reactions on Mo transition metal centers using a wide range of oxidation states from +2 to +6 [20]. Cao et al. reported that the MoS₂-based micro-supercapacitors exhibit a high specific capacitance of $8 \,\mathrm{mF \, cm^{-2}}$ (volumetric capacitance of $178 \,\mathrm{F \, cm^{-3}}$) [21]. Despite this previous work, testing of macroscopic electrodes revealed that the specfic capacitance values of MoS₂ were inferior, even though the morphology was controlled, with values of 92.85 F g^{-1} for sphere-like MoS₂ [22] and 129.2 F g^{-1} for flower-like MoS₂ being observed [23]. The poor performance of MoS₂ primarily originates from both the poor electrical conductivity and strong tendency for intersheet aggregation of MoS₂. Although various carbon additives have recently been coupled to MoS₂ nanosheets to improve electrical conductivity [27-29], the restacking and aggregation of exfoliated MoS₂ (e-MoS₂) still remain a challenge in MoS₂-based supercapacitors.

Herein, we report a simple and efficient method for preparation of ultrathin MoS₂ sheets coated with *N*-doped carbon layers from polydopamine. Dopamine, which is composed of catechol and amine functional groups, can spontaneously self-polymerize under alkaline pH values and deposit polydopamine films on any surface of organic and inorganic materials [30]. This polydopamine coating allowed us to efficiently prevent aggregation of MoS₂ sheets and

^{*} Corresponding author. Fax: +82 33 570 6535.

provide *N*-doped carbon shells onto the MoS_2 surface by a post carbonization process. Using these unique properties of *N*-doped carbon coated MoS_2 (NC- MoS_2), we demostrate that core-shell structured NC- MoS_2 electrodes showed improved specific capacitance, rate capability, and cycling performance relative to the bare MoS_2 .

2. Experimental

2.1. Materials

Molybdenum disulfide, dopamine hydrochloride, *n*-butyl lithium (1.6 M), and tris(hydroxymethyl) aminomethane were obtained from Sigma–Aldrich. Hydrochloric acid and sulfuric acid were purchased from Junsei. All materials were commercially available and employed without further purification.

2.2. Synthesis of NC-MoS₂

Prior to preparation of NC-MoS₂ samples, e-MoS₂ samples were obtained by the lithium intercalation method, as previously described reports [31]. Briefly, MoS₂ flakes (0.1 g) were lithiated by soaking in 1 mL of 1.6 M n-butyl lithium under an argon atmosphere for 24 h. The Li_xMoS₂ powder was then obtained by washing several times with de-ionized (DI) water, after which it was dried under vacuum at 60 °C for 24 h. To obtain polydopaminecoated (PDA-MoS₂) sample, the Li_xMoS₂ samples were redispersed in 75 mL of tris-buffer solution (10 mM, pH 8.5) through gentle sonication. Next, 150 mg of dopamine hydrochloride was added, and then the mixture was stirred at 80°C for 2h. After washing and centrifuging several times, PDA-MoS₂ samples were collected. To obtain the NC-MoS₂, the resulting PDA-MoS₂ was placed in a tubular furnace under N₂ atmosphere and kept to 400 °C for 2 h and 800 °C for 3 g at a heating rate of 1 °C min⁻¹ and $5 \circ C \min^{-1}$ for 3 h, respectively.

2.3. Structural characterization

Transmission electron microscopy (TEM), high-angle annular dark-field scanning TEM (HAADF-STEM) images and elemental mapping were conducted using an E.M. 912 Ω energy-filtering TEM (JEM2100F, JEOL Ltd.) at 200 kV. Scanning electron microscopy (SEM) images were obtained using a field emission SEM (S-4800, Hitachi). X-ray photoelectron spectroscopy (XPS) data were obtained using a Thermo MultiLab 2000 system with an Al Mg α X-ray source. X-ray diffraction (XRD) data were collected on a Rigaku D/max 111C (3 kW) with a q/q goniometer equipped with a CuKa radiation generator. The diffraction angle of the diffractograms was in the range of 2θ = 5–80°.

2.4. Electrochemical characterization

Prior to being used as a current collector, the Ti foil was rinsed in an ultrasonic bath of a solution of 0.5 M H₂SO₄ for 10 min and then washed with acetone followed by DI water for 10 min. The working electrode, which was composed of a slurry of 80 wt% active material (NC-MOS₂ or e-MOS₂), 10 wt% poly(vinylidenedifluoride) and 10 wt% activated carbon, was coated onto a pretreated Ti foil current collector (\approx 2.0 mg cm⁻²) and then dried at 60 °C overnight in a vacuum oven. All electrochemical measurements were performed in a three-electrode electrochemical cell in 1 M Na₂SO₄ at room temperature. A Pt wire and an Ag/AgCl electrode were used as the counter and as the reference electrode, respectively. Cyclic voltammetry (CV) and galvanostatic charge/discharge measurements were performed with a CHI 760E electrochemical workstation (CH Instruments). A life cycling test was taken by galvanostatic charge/discharge measurements at 1 A g⁻¹ of current density up to 1000 cycles. Electrochemical impedance spectroscopy (EIS) measurements were performed over a frequency range from 10^5 to 10^{-2} Hz at sinus amplitude of 10 mV using a VersaSTAT 4 (Princeton Applied Research). The as-obtained data were within the error range of $\pm 1\%$.

3. Results and discussion

Bulk MoS₂ typically has a compacted and layered structure due to the strong intersheet interactions of van der Walls forces (Fig. 1a) [32]. Conformal coating of PDA on e-MoS₂ through oxidative self-polymerization of dopamine led to a stable colloidal dispersion in water and maintained the exfoliated states (Fig. 1b), attributed to deprotonation of catechol —OH groups of PDA [33]. Obviously, the folded MoS₂ sheets were ascribed to the high flexibility of a few layers of MoS₂ (Fig. 1b). The NC-MoS₂ nanosheets were obtained after carbonization of PDA by calcination of the PDA-MoS₂ samples (Fig. 1c). Examination by high resolution-TEM revealed that graphitic carbon layers of ~2.5 nm were conformally coated on the surface of MoS₂ sheets (Fig. 1d). The uniform coating of *N*-doped carbon was further confimed by element mapping measurements according to the HADDF-STEM image (Fig. 2). The molybdenium and sulfur signals for MoS₂ and nitrogen and carbon signals for N-doped carbon completely overlapped.

Fig. 3a shows the XRD patterns of bulk MoS₂ and NC-MoS₂ samples. In contrast to the sharp diffraction peak at 14.2° of bulk MoS₂, the X-ray diffraction (XRD) pattern of the NC-MoS₂ samples show a broad and weak shift peak at 13.95°. These results suggest that MoS₂ nanosheets are still exfoliated after carbonization, which was due to being prevented re-stacking of e-MoS₂ sheets by the carbon layer derived from conformal coating of PDA onto e-MoS₂ sheets. The chemical composition of the NC-MoS₂ was characterized by X-ray photoelectron spectroscopy (XPS) measurements (Fig. 3b). The NC-MoS₂ sample contained newly appeared C 1s, O1s and N1s peaks in response to conformal coating and carbonization of PDA on e-MoS₂, which was in agreement with HADDF-STEM results. The surface elemental composition of NC-MoS₂ was further investigated by high resolution XPS (Fig. 3c). The C1s spectrum of NC-MoS₂ exhibited four different C groups: graphitic C at 284.52 eV, N-sp² C at 285. 37 eV, C—OH at 286.15 eV, N-sp³ C at 287.41 eV, and C=O at 289.59 eV, respectively [34,35]. The N1s spectrum that overlapped with the Mo3p spectrum (396.54 eV) in the range from 390 to 408 eV reveals the local chemical two characteristic peaks (Fig. 3d). The peaks at 399.27 eV corresponds to pyrrolic or pyridonic N, which contributed electron density of two *p*-electron to the π -conjugated system in the graphitic carbon layer [35]. Another N1s peak at 401.64 eV is graphitic N, which is located inside the graphitic carbon plane and bonds with three sp² carbon atoms [34,35]. These results demonstrated that PDA was completely converted into an Ndoped carbon with small amount of oxygen functional groups after carbonization.

The electrochemical performance of NC-MoS₂ was evaluated by CV measurement (Fig. 4). The e-MoS₂ sheets were also tested as a reference sample under identical experimental conditions as those used for NC-MoS₂. Fig. 4 shows the CV curves of the NC-MoS₂ and e-MoS₂ electrodes at a scan rate of 50 mV s^{-1} with a potential window ranging from -0.5 to +0.5 V versus Ag/AgCl in 1 M Na₂SO₄ electrolyte. As expected, the CV of the NC-MoS₂ electrode had a higher integrated area than that of the e-MoS₂ electrode when analyzed at the same scan rate. In addition, the NC-MoS₂ electrode exhibited non-rectangular shape, which is indicative of the combined contribution of faradaic and non-faradaic reactions of the MoS₂ sheet and N-doped carbon. More specifically, MoS₂

Download English Version:

https://daneshyari.com/en/article/1440539

Download Persian Version:

https://daneshyari.com/article/1440539

Daneshyari.com