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a b s t r a c t

Immersed Boundary Method simulations are used to propose a drag correlation for randomly arranged
monodisperse spheres. The solid volume fraction is varied from 0.05 to 0.5 and Reynolds number is varied
from 0.01 to 1000. The particles have constant relative velocity to fluid and thus the present results are
applicable to high Stokes number gas–solid flows. Average drag force acting on particles in both regular
and random arrangements is compared with literature and good agreement is observed. At the end a new
drag relation for monodisperse spheres is proposed and the physics behind its development is explained.
� 2014 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder

Technology Japan. All rights reserved.

1. Introduction

Gas–solid flows are described by flow of gases with solid parti-
cles. Scientists and engineers have been interested in such flows for
many years. Furthermore, gas–solid flows found applications in
many industrial processes such as pneumatic transport, particulate
pollution control, combustion of pulverized coal, drying of food
products, sand blasting, plasma-arc coating and fluidized bed
processes. To improve the efficiency and performance of these pro-
cesses the understanding of the physics and dynamics of gas–solid
flows are required, however, we still have to rely on empirical
correlations or models especially for the moderate and high
particle Reynolds number cases and further investigation is
required for these cases.

Computer simulations can be useful for the understanding of
such flows and design and scale-up of such processes. For the wide
use of computer simulations for designing systems, appropriate
models are necessary and the methods are desired to be capable
of simulating large size systems and should have small computa-
tional time. These methods include Eulerian-Eulerian methods
based on two-fluid models [1,2] and Eulerian–Lagrangian methods
based on discrete particle models [3–7]. The two-fluid model
assumes both the gas and the solid phases as inter-penetrating
continua and is especially useful and computationally cost efficient
when the volume fractions of the phases are comparable, or when

the interaction within and between the phases plays a significant
role in determining the hydrodynamics of the system. On the other
hand, in discrete particle models, locally averaged fluid equations
are solved by continuum approach but particle-particle interac-
tions are solved by discrete element methods [8] or by hard-sphere
models. These methods based on discrete particle models are com-
putationally more expensive for dense solid flows, however require
less assumptions and the particle properties like particle size and
density distribution can be directly taken into account in the
simulation.

In either of the above two approaches, flow domain is divided
into cells for fluid flow calculation, the size of which is smaller than
the mesoscopic structures like bubbles or clusters of particles but
larger than the particle size. The model equations rely on various
constitutive relations to account for the many unknown terms
emerging from averaging—fluid-particle drag, added-mass, lift, his-
tory force, and particle and fluid phase stresses. Among all these
terms, the fluid-particle drag is particularly important for gas–solid
suspensions. It is usually the primary force to suspend and trans-
port the particles and have significant influence on the results.
For example Benyahia [9], Gomez and Milioli [10], Heynderickx
et al. [11] and Wang et al. [12] compared solid-volume-fraction
variations in the riser of circulating fluidized bed and observed that
the drag laws based on empirical relations give more homogenous
structures as compared to experiments. Du et al. [13] compared
voidage profiles, particle velocity profiles and solid flow patterns
in spouted beds and observed different results by different drag
relations. Bokkers et al. [14] analyzed the effect of drag law on
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bubble formation. Leboreiro et al. [15] simulated segregation in
gas–solid fluidized bed and observed the equations obtained from
direct numerical simulation gave better results.

In literature from theoretical viewpoint, little is known about
the drag force on particles. Most of the studies are limited to low
Reynolds number (Re) and solid volume fractions (u). Some of
the examples of theoretical works are the work of Hasimoto [16],
Sangani and Acrivos [17], Kim and Russel [18] and Goldstein
[19]. However, practical applications of gas–solid flow involve high
Reynolds number thus one has to rely on empirical relations. For
example, Ergun [20] proposed a relation for pressure drop in
packed bed based on his experiments, Richardson and Zaki [21]
based on their sedimentation experiments proposed a relation
for the determination of hindered settling velocity at different solid
volume fractions. Wen and Yu [22] also conducted a series of
fluidization experiments and proposed a drag relation. Based on
these empirical relations some modifications can also be found in
literature. For example, one of the most widely used relations in
chemical engineering is the relation proposed by Gidaspow [23].
He combined Ergun [20] and Wen and Yu [22] relation. He sug-
gested the use of Ergun [20] relation for u > 0.2 and Wen and Yu
[22] relation for u < 0.2. One of the shortcoming of this relation
is at u = 0.2 there is a discontinuity in the calculation of drag force
and this discontinuity increases with the Reynolds number. Di
Felice [24] suggested that the exponent in Wen and Yu [22] equa-
tion should not be constant but a function of Reynolds number.
Syamlal et al. [25] proposed their drag relation by converting
terminal velocity correlations by Richardson and Zaki [21].

With the advancement of computing power the direct numeri-
cal simulation (DNS) has become possible. The advantages of DNS
are better control of the setup like particle size and shape without
the need of closure relations. Furthermore, simulations can also
give better insight and understanding of the physics of flow. Some
of the early works for the calculation of drag force on porous media
and cylinders are made by Koch and Ladd [26], Andrade et al. [27]
and Rojas and Koplik [28]. Later, three dimensional simulations are
performed by Hill et al. [29,30] for drag force calculation for
ordered and random arrangements of monodisperse spheres for
Reynolds number up to 100. Van der Hoef et al. [31] extended
the work for poly-disperse spheres and Stokes flow condition.
Beetstra et al. [32] simulated flow through poly-disperse spheres
for Reynolds number up to 1000. Yin and Sundaresan [33,34] and
Holloway et al. [35] performed simulations for poly-disperse
spheres with relative motion for Stokes and moderate Reynolds
number flow. All these simulations are based on the SUSP3D code
based on lattice Boltzmann method (LBM) developed by Ladd
[36,37]. Recently Tenneti et al. [38] proposed a new drag relation
for monodisperse spheres using Immersed Boundary Method
(IBM) with much refined grid resolution up to Re = 300. Their work
raised some questions for the drag relations proposed by LBM. For
example, their relation showed large deviation from the relation
proposed by Beetstra et al. [32] (about 38% over-estimation) at
Re = 300. Furthermore, they also mentioned that the simulation
setup used by Holloway et al. [35] do not satisfy the Galilean
invariance of particles with relative motion and may results an
error of about 10%. Thus in literature there is still ambiguity in
the development of drag relation by direct numerical simulation
even for monodisperse spheres and there is still space for further
research and investigations. The main aim of this paper is to pro-
pose a drag relation for randomly arranged monodisperse spheres.
The new findings in this paper are the drag relation for extended
range of Reynolds number (Re 6 1000) and solid volume fractions
for monodisperse spheres and explanation of physics of the
correlation for low and high solid volume fractions.

The sequence of the present paper which we will follow: After
introduction we will give a brief overview of the formulation used

in the present simulations which will be followed by simulation
setup and testing of parameters of simulation setup. Then we will
discuss about the benchmarking of our simulation results with
other researchers. Later we curve fit our simulation data and pro-
pose a new drag correlation. At the end we will conclude the paper.
Because of the frequent use of some of the references in this paper
from now on we will use HEL for Hill et al. [29,30], BEL for Beetstra
et al. [32] and TEL for Tenneti et al. [38].

2. Formulation

For drag force calculation, we have used Immersed Boundary
Method (IBM). IBM is a class of non-body conformal grid methods.
Since the grid does not conform to the solid boundary, imposition
of solid boundary requires modifications of fluid equations near
the solid boundary. This can be done either by indirect or direct
forcing [39]. In indirect forcing, the no-slip condition at solid sur-
face is imposed by the use of smoothed distribution function on
the fluid grid near the boundary. This leads to smoothing of the
forcing function and spreading its effects over a band of fluid cells;
thus diffusing the sharp representation of the solid surface. It is
particularly undesirable for high Reynolds number flows. In direct
forcing, computational stencil near the immersed boundary is
directly modified by interpolation. Thus the sharp interface of the
solid surface near the immersed boundary can be obtained. Fur-
thermore, if the resolution of fluid grid is fine then the shape of
solid surface can be reasonably reproduced.

In the present article, direct forcing type IBM is used. We will
explain only the main points, detail of this method can be found
in Kajishima et al. [40]. In the IBM the fluid can be liquid or gas
but it is assumed to be incompressible and Newtonian. The solid
spherical particle is assumed to be rigid. The grid size used for dis-
cretizing the computational domain is smaller than size of particles
and fluid flow equations are solved by assuming that the fluid
occupies the entire flow field and the effect of particles is
expressed by a body force in the momentum equation which con-
strains the no slip boundary condition at the particles surface. The
equations of continuity and incompressible Navier–Stokes equa-
tion without gravity effects is given by:

r � uf ¼ 0 ð1Þ

@uf

@t
þ uf � ruf ¼ mr2uf �

rp
q

ð2Þ

where uf is the fluid velocity, q is density, m is the kinematic viscos-
ity and p is pressure. For improving the efficiency of numerical inte-
gration the following fluid-particle volume-weighted velocity (u) is
defined as:

u ¼ avp þ ð1� aÞuf ð3Þ

where vp is the particle velocity and a is the volume fraction of
particle in a target cell. a takes the value zero for fluid and one for
particle and in the range of zero to one at the particle interfacial cell.

Time-marching of momentum equation in IBM consist of
two steps. In the first step the fluid velocity is predicted by using
Eq. (4):

~u ¼ un0 þ t �rp
q
� u � ruþ mr2u

� �
ð4Þ

where n0 denotes the previous time step. In the second step this
predicted velocity ~u is used to calculate forcing term (f p) in
Eq. (5) for the calculation of fluid velocity at n0 + 1 time step. The
forcing term is given by:

f p ¼ aðvp � ~uÞ=Dt ð5Þ
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