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a b s t r a c t

The void fraction of computational cells in numerical simulations of particulate flows using computa-
tional fluid dynamics–discrete element method (CFD–DEM) is often directly (or crudely) calculated
assuming that the entire body of a particle lies in the cell at which the particle centroid resides. This
direct method is most inexpensive but inaccurate and may lead to simulation instabilities. In this study,
a modified version of the direct method has been proposed. In this method, referred to as the particle
meshing method (PMM), the particle is meshed and the solid volume in a fluid cell is calculated by adding
up the particle mesh volume with the basic working principle being the same as that of the direct
method. As a result, the PMM inherits the simplicity and hence the computational advantage from the
direct method, whilst allowing for duplicating the particle shape and accurate accounting of particle vol-
ume in each fluid cell. The numerical simulation characteristics of PMM including numerical stability,
minimum particle grid number, prediction accuracy, and computational efficiency have been examined.
The results showed that for a specific cell-to-particle size ratio, there was a minimum particle grid num-
ber required to reach the stable simulation. A formula of estimating the minimum particle grid number
was derived and discussed. Typically, a particle grid number of about 5 times the minimum number was
suggested to achieve the best computational efficiency, which was comparable or even higher than that
of simulations using the analytical approach. PMM also exhibited the potential to be applied for complex
computational domain geometries and irregular shaped particles.
� 2015 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder

Technology Japan. All rights reserved.

1. Introduction

Computational fluid dynamics–discrete element method
(CFD–DEM) simulation of particulate flows prevailing in industrial
processes has become increasingly popular in the past few decades
[see e.g., 1,2–5]. Generally, the CFD–DEM method has been proved
to be effective in capturing the majority of macro- and micro-scale
characteristics of the fluid–solid two-phase flow, whilst providing
insight into the underlying science specifically at the particle scale.
The quality of prediction results of the CFD–DEM simulation how-
ever is found to be strongly relying on the accurate account of the
presence of particles in the two-phase flow.

The presence of solid particles in CFD–DEM simulations of the
two-phase flow is considered by incorporating the volume fraction
of the solid phase in computational fluid cells into the governing

equations. The solid volume fraction is commonly calculated by a
direct or crude method assuming that the entire body of the parti-
cle lies in the fluid cell at which the particle centroid resides [1,2].
This direct method is computationally inexpensive as it only
involves searching of the particle centroid host cell. However, the
direct method may lead to large errors when the particle centroid
is near the fluid cell boundaries. Such large errors might yield a sig-
nificant fluctuation in the value of cell void fraction when the par-
ticle centroid moves in and out of the fluid cell leading to
simulation instabilities and unrealistic particulate flow behaviours.

Attempts have been made towards the accurate calculation of
cell void fraction. Chen et al. [6] analytically calculated the void
fraction in a one dimensional (1D) CFD–DEM simulation to solve
classical soil mechanics problems. The 1D implementation of the
analytical approach is quite straightforward. Li [7] analytically cal-
culated the void fraction on two-dimensional (2D) structured
meshes in the CFD–DEM simulation of flow structure formation
and evolution in dense gas–solid flows. Freireich et al. [8] and Peng
et al. [5] detailed the three-dimensional (3D) analytical solution of
void fraction in structured rectangular cells. Wu et al. [9] derived a
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set of equations to analytically solve the cell void fraction on both
2D and 3D unstructured meshes. The analytical solution is compu-
tationally very expensive as evaluations of trigonometric functions
need to be conducted at every time step [10].

Various non-analytical approaches have also been reported in
the literature for the calculation of cell void fraction. For example,
Link et al. [11] and Khawaja et al. [12] represented a particle as a
porous cube. The size of the cube depended on the particle diame-
ter and a constant scaling factor. Using the fictitious porous cube,
the presence of particles was weakly felt by the fluid flow. As such,
grid refinement did not lead to local extremes in the void fraction
field, and hence the solution was grid independent. Lim et al. [13]
calculated the void fraction for a fluid cell grouped together with
its surrounding cells via the direct method. This method added sta-
bility by calculating the cell void fraction for a larger virtual cell
that comprised several real fluid cells. However, this technique also
added greater spatial smoothing to the averaging procedure since
quantities such as velocity and pressure were calculated for the
real fluid cells, but void fraction was calculated on a larger volume
scale. Moreover, this method may lead to large errors if the local
cell void fraction is vastly different from that of the larger virtual
volume, e.g., in bubbly fluidised beds. Following the approach used
in the local averaging of granular materials, Kuang et al. [14] pro-
posed a more general method in this regard using virtual spherical
cells containing local points of interest. The porosity and the source
terms due to particle–fluid interactions were calculated for the vir-
tual spherical cells and then mapped into CFD cells. Sun et al. [15]
and Xiao and Sun [16] assumed that each computational cell
accepts contributions from all of the particles in the system. Based
on the assumption, the local cell void fraction was calculated
through a statistically averaging approach using a weighting func-
tion that is similar to the estimation of probability density function

from discrete points. Inevitable statistical error exists in this
approach and strongly depends on the form of the weighting func-
tions and the parameters (e.g. bandwidth). Moreover, the imple-
mentation of this approach has a computational complexity of
the order of O(NpNc), as all particles and cells need to be visited
and examined at each time step. Gui et al. [17], Hilton et al. [18]
and Hobbs [19] used regular squares or cubes to subdivide the par-
ticles. Apparently, the regular squares or cubes cannot provide a
smooth representation of particle boundaries and thus
unavoidably introduces error. Hilton et al. [18] minimised the error
by linearly approximating the particle boundary, but the method is
limited to spherical or regular non-spherical particles (e.g.
ellipsoids and cuboids) and simple geometries (only in which the
recursive approach and the linear approximation can be imple-
mented). Boyce et al. [10] proposed a square-grid method, in which
the distribution of particle volume on a square grid was calculated
and then mapped on to the computational fluid cells that can be of
arbitrarily complex shape. The method has an obvious source of
inaccuracy as it is very likely that a fraction of the particle volume
can be registered as being in a fluid cell in which the particle is not
located, considering the squared cell is larger and contains several
fluid cells.

As a whole, the simplistic nature of the current non-analytical
approaches can compromise the accuracy of the calculation for
the flexibility to cope with complex domain geometries. However,
as repeatedly indicated in the literature [see e.g., 4,5], the accurate
calculation of cell void fraction is a must in CFD–DEM simulations
to ensure the numerical stability and the reliability of prediction
results. Moreover, in most of practical problems the simulation
needs to deal with complex geometries and/or irregularly shaped
particles. The implementation of the analytical approach
becomes extremely difficult and very computationally demanding.

Nomenclature

A factor (–)
A face area factor
d diameter (m)
fc collision contact forces acting on the particle (N)
ff total fluid forces acting on the particle (N)
fd drag force (N)
fsg local mean particle-fluid interaction forces (N)
g acceleration of gravity (m/s2)
I particle inertia (kg m2)
l0, l1, l2 domain dimension (m)
m particle mass (kg)
Np particle number inside a cell
Nc,b total number of computational cells that cover the flu-

idised bed of particles
p pressure (Pa)
r radius (m)
Sc equivalent cell size (m)
T torque acting on the particle (N m)
Usf gas superficial velocity (m/s)
u fluid velocity vector (m/s)
V volume (m3)
Ve volume of particle grid (m3)
v particle velocity vector (m/s)
x coordinates of a point (m)

Greek symbols
a fraction of particle volume divided by a fluid cell (–)
b momentum exchanging coefficient (–)
c scaling factor (–)

d contact overlapping (m)
e local void fraction
Dt time step (s)
k size magnification factor from template particle to real

particle (–)
l shear viscosity (kg/(m s))
q density (kg/m3)
s viscous stress tensor
w normalised net mass flow rate
K mass flow rate through cell faces (kg/s)
u cell-to-particle size ratio
DVc computational cell volume (m3)
v operator sign (–)
H granular temperature (m2/s2)
x particle angular velocity (rad/s)
# average deviation in the calculation of cell void fraction

by PMM

General subscripts
d drag
f face
g gas phase
i, j, k particle index
min minimum
max maximum
p particle phase
pg particle grid
r relative
x, y, z direction
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