ELSEVIER

Contents lists available at ScienceDirect

Advanced Powder Technology

journal homepage: www.elsevier.com/locate/apt

Original Research Paper

Synthesis of high-purity micro-spherical ruthenium particles by chemical refining method

Jun Bi, Wei Yi*, Jialin Chen, Ming Wen, Weiming Guan

State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106, China

ARTICLE INFO

Article history:
Received 12 June 2015
Received in revised form 17 September 2015
Accepted 2 November 2015
Available online 14 November 2015

Keywords:
Particles
High-purity
Heating rate
Powder technology

ABSTRACT

Ruthenium is widely used as magnetic recording and electrode materials. In this study, high-purity micro-spherical Ru particles were synthesized from crude ruthenium sequential by distilling, precipitation, dry spraying and ignition. Impurities in the starting Ru powders were eliminated by distilled and precipitated treatments. The morphology and size of as-synthesized Ru particles were controlled by dry spraying and ignition processes. The influences of heating rate in ignited treatment on the morphology and size of Ru particles were investigated. The purity of as-synthesized Ru particles was higher than 99.995 wt%, and the average size was about 12 μ m. It should be noted that the powder technology in this study could be applied to synthesize other metals particles with high-purity requirement.

© 2015 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.

1. Introduction

The applications of ruthenium as magnetic recording material (hard digital disk, HDD) and electrode material are rapidly expanding [1–4]. Those kinds of HDD or electrode are generally fabricated by sputtering Ru target. In order to guarantee the operational performance as a reliable electronic device, it is important to minimize impurities in the Ru target that are deleterious to the device. The impurities that must be removed to minimum contents include alkali metals, transition metals and radioactive elements. Alkali-metal elements such as Na and K easily migrate in the gate insulator and cause the MOS-LSI interfacial quality to deteriorate. Transition metal elements such as Fe, Ni, Co, Cr and Cu cause trouble at the interface bonding. Radioactive elements such as U and Th cause a soft error of element due to alpha emitted from such elements [5].

Normally, foregoing Ru targets were manufactured using powder metallurgical techniques such as hot pressing (HP), hot isostatic pressing (HIP) and spark plasma sintering (SPS) [6–8]. Impurities included in the Ru powder neither be increased nor decreased after the sintering process. Therefore, synthesis of high-purity Ru powder is the crucial process of Ru target fabrication. Shindo and Hisano [9] synthesized a high purity (≥ 99.995 wt%) Ru powder by electrolytic refining from the crude Ru powder (≤ 99.9 wt%). The Ru powder wherein the content of

the respective alkali metal elements such as Na and K were 10 ppm or less, and the content of Al was the range of 1 to 50 ppm. But the morphology and particle size of the refining Ru powder were uncontrollable. Lu et al. [10] synthesized the chain-like Ru nanoparticle array by liquid chemical reduction process. The obtained chain-like Ru nanoparticle arrays showed high activity in hydrogenation of phenol with broad concentration. However, the purity of Ru powder was not enough due to the limitation of the liquid chemical processing. To development high purity, controllable size and morphology Ru powder is desirable.

In this study, we present a chemical refining process, with which high-purity micro-spherical ruthenium particles are synthesized. To best of our knowledge, there is no report on the kind of Ru powder. A good understanding of the processing conditions is crucial to the reliability of Ru powder and further Ru target, and is also significant for the further development of refining technique for high-purity materials.

2. Materials and methods

All reagents and solvents were used as received without further purification. Crude ruthenium powder (\leq 99.95 wt%) was purchased from Sino Platinum Metals (Yimen) Co. LtD. (Yimen, Yunnan, P.R. China), high purity chlorine (Cl₂) and hydrogen (H₂) from Pengyida Co. LtD. (Kunming, Yunnan, P. R. China), guarantee grade sodium hydroxide (NaOH), ammonium chloride (NH₄Cl), hydrochloric acid (37.5 wt%, HCl) and ethanol from Sigma (St. Louis, MO). The self-made distilled water was used as the solvent.

^{*} Corresponding author. Tel.: +86 871 68328950; fax: +86 871 68329495. E-mail address: yiwei@ipm.com.cn (W. Yi).

The crude Ru powder was heated (85 °C) and dissolved in NaOH solution, and a stream of Cl₂ passed through it causing the ruthenium to distill as the tetroxide (RuO₄) which was collected in a solution of hydrochloric acid (6 mol/l), from which H₂RuCl₆ can be obtained [11]. The high-purity (NH₄)₂RuCl₆ powder was precipitated from the H₂RuCl₆ solution by addition of NH₄Cl. The (NH₄)₂-RuCl₆ powder was, then, spraying dried to micro-spherical particles. After that, high-purity micro-spherical (NH₄)₂RuCl₆ particles were ignited in N₂/H₂ (Vol 9:1) at 500 °C for 4 h followed by cooling under N₂/H₂. High-purity micro-spherical Ru particles were synthesized.

A commercial dry spraying machine (B290, Buchi, Switzerland) was used to prepare high-purity micro-spherical particles. The thermal decomposition behavior of spraying dried powder was analyzed by Thermogravimetric Analysis-Differential Scanning Calorimetry (TG-DSC, SPA409PC, NETZSCH, Germany) in N₂ atmosphere, 10 °C/min heating rate. The impurities of as-synthesized Ru particles were measured by Glow Discharge-Mass Spectrometry (GD-MS, GD PLUS GD, ELEMENTTM, Thermo scientific, U.S.). X-ray diffraction (XRD, Empyrean, PANalytical, the Netherlands, Cu Kα radiation at 40 kV) was performed to analyze the phases of solid materials. The microstructure of (NH₄)₂RuCl₆ and Ru particles were observed by Scanning Electron Microscopy (SEM, S-3400 N, Hightech, Japan).

3. Results and discussion

The TG-DSC analysis of (NH₄)₂RuCl₆ powder is shown in Fig. 1, where two main thermal decomposed stages located at around 350 °C are observed. Because (NH₄)₂RuCl₆ powder was precipitated from H₂RuCl₆ aqueous solution, some NH₄Cl residual would be mixed with (NH₄)₂RuCl₆ powder. In the TG-DSC analysis, NH₄Cl completely decomposed when the temperature increased to 255.0 °C, and the as-precipitated powder lost 2.784 wt%. The 1st decomposition temperature range of (NH₄)₂RuCl₆ was from 255.0 °C to 353.5 °C, with the peaking temperature at 334.5 °C. At this stage, the weight declined by 30.962 wt%. With the temperature elevating, the 1st stage solid residual kept decomposing. The 2nd decomposition temperature range was from 353.5 °C to 418.8 °C, with peaking temperature at 367.0 °C. At this stage, the weight continuously decreased by 29.244 wt%. The final solid residual was 31.99 wt% of the precursor powder. According to the stoichiometric ratio of Ru in (NH₄)₂RuCl₆ compound, the as-ignited powder should be Ru. This is consistent with the (NH₄)₂RuCl₆ thermal decomposition [12]. The chemical transforming process of (NH₄)₂RuCl₆ thermal decomposition would be described as follows:

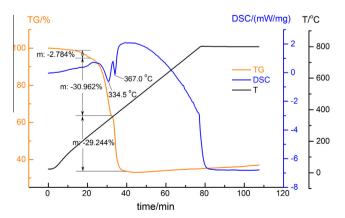


Fig. 1. TG-DSC analysis of as-precipitated (NH₄)₂RuCl₆ powder.

1st decomposed stage

$$(NH_4)_2 RuCl_6 \xrightarrow{255 \, ^{\circ}C-353 \, ^{\circ}C} RuCl_4 + NH_3 \uparrow + 2HCl \uparrow$$

2nd decomposed stage

$$RuCl_4 \xrightarrow{353 \text{ }^{\circ}C-418 \text{ }^{\circ}C} Ru + 2Cl_2 \uparrow$$

The XRD pattern of as-precipitated $(NH_4)_2RuCl_6$ powder is shown in Fig. 2a. However, it should be noted that $(NH_4)_2RuCl_6$ is not listed in the International Centre for Diffraction Data (formerly Joint Committee on Powder Diffraction Standards JCPDS 7-240 database) [13]. After ignited at 500 °C in N_2/H_2 (Vol 9:1) for 4 h, $(NH_4)_2RuCl_6$ was completely decomposed and transformed into Ru powder (hexagonal phase, PDF 03-065-1863), as is shown in Fig. 2b. The result is consistent with TG-DSC measurement of $(NH_4)_2RuCl_6$ powder.

The microstructures of as-precipitated (NH₄)₂RuCl₆ and spray dried (NH₄)₂RuCl₆ particles are shown in Fig. 3. The (NH₄)₂RuCl₆ powder was precipitated from H₂RuCl₆ solution. To control the high-purity property of precipitation, no any other reagents was added. Thus, as-precipitated (NH₄)₂RuCl₆ particle shows its natural morphology (piece-like), as observed in Fig. 3a. The size distribution of as-precipitated particles is between nano to micro. After spraying dried treatment, the (NH₄)₂RuCl₆ pieces were agglomerated and transformed into well-dispersed micro-sized ball-like particles (Fig. 3b). The particle sizes of spray dried (NH₄)₂RuCl₆ are between 15 and 30 μ m, and the average size is about 24 μ m. The (NH₄)₂RuCl₆ particles are incompact with very rough surface, where several pores are observed. It should be noted that the feature is a typical morphology of spraying dried particles [14].

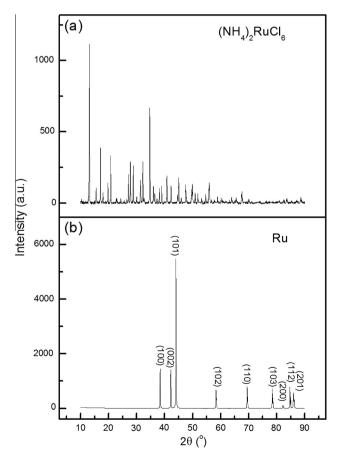


Fig. 2. X-ray diffraction patterns of as-precipitated $(NH_4)_2RuCl_6$ powder and assynthesized Ru powder. (a) $(NH_4)_2RuCl_6$; (b) Ru.

Download English Version:

https://daneshyari.com/en/article/144261

Download Persian Version:

https://daneshyari.com/article/144261

<u>Daneshyari.com</u>