ELSEVIER

Contents lists available at ScienceDirect

Synthetic Metals

journal homepage: www.elsevier.com/locate/synmet

Syntheses, crystal structures, and magnetic properties of four new molecular solids based on $Ni(mnt)_2$ monoanion (mnt^2 = maleonitriledithiolate)

Chunlin Ni a,*, Zhaoping Ni b, Zhengfang Tian b, Qingjin Meng b,*

- a Department of Applied Chemistry, Centre of Inorganic Functional Materials, College of Science, South China Agricultural University, 510642 Guangzhou, PR China
- b State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Nanjing University, 210093 Nanjing, PR China

ARTICLE INFO

Article history: Received 24 April 2008 Received in revised form 20 June 2008 Accepted 4 July 2008 Available online 28 August 2008

Keywords:
Bis(maleonitriledithiolato)nickel(III)
monoanion
Molecular solids
Substituted pyridinium
Crystal structures
Ferromagnetic coupling

ABSTRACT

Four new molecular solids, [1-(2'-F-4'-R-benzyl)] pyridinium][bis(maleonitrile dithiolato)] nickel] (abbreviated as [RFBzPy][Ni(mnt)₂], R = F (1), Cl (2), I (3), H (4)), have been prepared and characterized. The Ni(III) ions in 1–3 form a 1D zig-zag chain within a Ni(mnt)₂ column. The chain is uniform in 2 and 3, while it is alternating in 1. The cations and Ni(mnt)₂ ions of 4 stack in complicated way in which the stacking of Ni(III) ions shows an ACA-type repeat unit. Magnetic susceptibility measurements in the temperature range 1.8–300 K show that 1 and 4 are diamagnetic, whereas 2 and 3 exhibit ferromagnetic coupling behavior. The $\chi_M T$ of 2 and 3 can be well reproduced by the Baker equation for a 1D S = 1/2 magnetic chain with g = 2.01, J = 17.8 cm⁻¹ for 2, and g = 2.04, J = 41.1 cm⁻¹ for 3.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The investigation of molecular solids based on transition metal complexes of bis-dithiolenes has become a fascinating subject in the field of molecular-based materials [1]. Considerable efforts have been directed towards preparation and characterization of new transition metal bis-dithiolene complexes that can display superconductivity, electrical conductivity, strong nearinfrared absorptions, optical properties, and interesting magnetic properties [2,3]. The $[M(mnt)_2]^-$ (mnt²⁻ = maleonitriledithiolate, M=Ni, Pd or Pt ion) complexes are very useful building blocks for magnets [4,5]; in particular, the discovery in 1996 of the ferromagnetic complex containing Ni(mnt)₂⁻ ion, NH₄·Ni(mnt)₂·H₂O [6], strongly stimulated renewed interest in Ni(mnt)₂-based molecular solids. One of the interesting works in our laboratory is to develop a new class of ion-pair complexes [RbzPy]⁺[M(mnt)₂]⁻ $([RbzPy]^+ = benzylpyridinium derivative, M = Ni, Pd, Pt ion) in$ which the Ni(mnt)₂⁻ anions and [RbzPy]⁺ cations stack into wellsegregated columns, and exhibit versatile magnetic properties such as ferromagnetic ordering at low temperature, magnetic transition from ferromagnetic coupling to diamagnetism, metamagnetism, spin-gap transitions and spin-Peierls-like transitions [7–9]. In our continuing work with molecular solids based on [M(mnt)₂]⁻ anion, we sought to further find some multifunctional organic cations to control the stacking pattern of [M(mnt)₂]⁻ anions with a view to obtaining ideal molecular magnets. Herein, we succeeded in synthesizing four novel molecular solids, [FFBzPy][Ni(mnt)₂] (1), [CIFBzPy][Ni(mnt)₂] (2), [IFBzPy][Ni(mnt)₂] (3), and [HFBzPy][Ni(mnt)₂] (4). Their crystal structures and magnetic properties have been systemically investigated. It is interesting that 2 and 3 show ferromagnetic coupling behavior. To the best of our knowledge, the uniform chain exhibiting ferromagnetic coupling behavior is very rare for molecular solids containing Ni(mnt)₂- monoanion [4b,6,8c].

2. Experimental

2.1. Materials and methods

All chemicals purchased were of reagent grade and used without further purification. The starting materials, disodium male-onitriledithiolate (Na₂mnt) and 1-(2'-F-4'-R-benzyl)pyridinium bromide ([RFBzPy]Br) (R=F, Cl, I or H) were synthesized following the literature procedures [10]. A similar method for preparing [BrFBzPy]₂[Ni(mnt)₂] was utilized to prepare [RFBzPy]₂[Ni(mnt)₂] [8c]. Elemental analyses were run on a Model 240 PerkinElmer C H N instrument. IR spectra were recorded on an IF66V FT-IR (400–4000 cm⁻¹ region) spectrophotometer in KBr pellets. Magnetic susceptibility data on crushed polycrystalline samples of **1–4**

^{*} Corresponding author. Tel.: +86 20 85282568; fax: +86 20 85285026. E-mail address: niclchem@scau.edu.cn (C. Ni).

Table 1 Crystallographic data for 1–4

	1	2	3	4
CCDC number	298945	298944	298948	298946
Empirical formula	$C_{20}H_{10}F_2N_5NiS_4$	C ₂₀ H ₁₀ ClFN ₅ NiS ₄	$C_{20}H_{10}IFN_5NiS_4$	$C_{20}H_{11}FN_5NiS_4$
Formula weight	545.28	561.73	653.18	527.29
Crystal system	Triclinic	Monoclinic	Monoclinic	Triclinic
Space group	P-1	P2 ₁ /c	P2 ₁ /c	P-1
a (Å)	7.1996(17)	12.048(2)	11.896(3)	13.239(3)
b (Å)	10.377(3)	26.228(5)	26.548(6)	14.765(3)
c (Å)	14.470(4)	7.4277(13)	7.610(2)	17.864(4)
α (°)	105.685(4)	90	90	106.140(10)
β (°)	95.606(4)	101.664(4)	101.660	99.750(10)
γ(°)	96.105(5)	90	90	92.360(10)
$V(\mathring{A}^{-3})$	1096.7(5)	2298.6(7)	2353.6(10)	3291.5(13)
Z	2	4	4	6
ρ_{Calcd} . (g cm ⁻³)	1.651	1.623	1.843	1.596
Absorption coeff. (mm ⁻¹)	1.301	1.351	2.518	1.291
θ range (°)	2.1-25.0	1.9-25.0	2.3-26.0	2.0-25.0
F(000)	550	1,132	1,276	1,602
Reflections collected	5485	11,379	12,387	16,399
Unique reflections	3784	4030	4,597	11,360
R _{int}	0.024	0.036	0.031	0.021
Goodness-of-fit on F ²	1.051	1.057	1.095	0.956
R indexes $[I > 2\sigma(I)]^a$	$R_1 = 0.0537$	$R_1 = 0.0504$	$R_1 = 0.0548$	$R_1 = 0.0573$
	$wR_2 = 0.1212$	$wR_2 = 0.0996$	$wR_2 = 0.1431$	$wR_2 = 0.1216$
R (all data) ^a	$R_1 = 0.0756$	$R_1 = 0.0727$	$R_1 = 0.0677$	$R_1 = 0.0872$
,	$wR_2 = 0.1285$	$wR_2 = 0.1061$	$wR_2 = 0.1486$	$wR_2 = 0.1306$

 $^{^{}a} R_{1} = \Sigma(||F_{0}| - |F_{c}||)/\Sigma|F_{0}|, wR_{2} = \left[\sum w(|F_{0}|^{2} - |F_{c}|^{2})^{2}/\sum w(|F_{0}|^{2})^{2}\right]^{1/2}.$

were collected over the temperature range of $1.8-300\,\mathrm{K}$ using a SQUID MPMS-XL magnetometer.

2.2. Synthesis

2.2.1. Synthesis of $[FFBzPy][Ni(mnt)_2](1)$

[FFBzPy]₂[Ni(mnt)₂] (752 mg, 1.0 mmol) was dissolved in $30\,\text{cm}^3$ MeCN, then a MeCN solution ($10\,\text{cm}^3$) of I₂ ($150\,\text{mg}$, 0.59 mmol) was slowly added, the mixture was stirred for 1 h, and then $100\,\text{mL}$ CH₃OH was added. After the mixture was allowed to

stand overnight, 462 mg dark microcrystals produced were filtered off, washed with CH₃OH and Et₂O and dried in a vacuum. Yield: ~85%. Anal. Calc. for C₂₀H₁₀F₂N₅NiS₄: C, 44.05; H, 1.85; N, 12.84. Found: C, 44.13; H, 1.89; N, 13.03%. IR spectrum (cm⁻¹): ν (CN), 2202 s; ν (C=C) of mnt²-, 1487 s.

2.2.2. Syntheses of [CIFBzPy][Ni(mnt)₂] (**2**), [IFBzPy][Ni(mnt)₂] (**3**) and [HFBzPy][Ni(mnt)₂] (**4**)

The procedures for preparing **2**, **3** and **4** are similar to that for **1**. Yield of **2**: \sim 87%. Anal. Calc. for $C_{20}H_{10}ClFN_5NiS_4$: C, 44.05; H,

Table 2 Bond distances (Å), bond angles ($^{\circ}$), intermolecular contacts (Å) and dihedral angles ($^{\circ}$) for **1–4**

	1	2	3	4
Bond distances (Å)				
Ni(1)-S(1)	2.1365(15)	2.1440(12)	2.1336(16)	2.1413(13)
Ni(1)-S(2)	2.1470(15)	2.1267(12)	2.1400(16)	2.1384(14)
Ni(1)-S(3)	2.1566(15)	2.1254(12)	2.1544(16)	2.1372(14)
Ni(1)-S(4)	2.1411(15)	2.1511(12)	2.1380(160	2.1438(14)
Ni(2)-S(5)				2.1455(14)
Ni(2)-S(6)				2.1433(14)
Ni(2)-S(7)				2.1352(14)
Ni(2)-S(8)				2.1377(14)
Bond angles (°)				
S(1)-Ni(1)-S(2)	92.75(5)	92.32(4)	92.25(6)	92.38(5)
S(2)-Ni(1)-S(3)	88.76(5)	85.49(4)	89.90(6)	87.62(5)
S(1)-Ni(1)-S(4)	86.06(5)	89.70(4)	85.35(6)	87.70(5)
S(3)-Ni(1)-S(4)	92.53(5)	92.46(4)	92.51(6)	92.31(5)
S(5)-Ni(2)-S(6)				92.77(5)
S(5)-Ni(2)-S(8)				87.56(5)
S(6)-Ni(2)-S(7)				87.39(5)
S(7)-Ni(2)-S(8)				92.28(5)
Intrachain distances (Å)				
Ni···Ni	3.674, 4.212	3.940	3.998	3.539, 4.420, 4.228, 3.539
Ni···S	3.659, 3.655	3.645	3.650	3.870, 3.673, 3.665, 3.705
S···S	3.764, 3.715	3.719	3.757	3.591, 3.784, 4.197, 3.617
Dihedral angles (°)				
C_{Ar} – CH_2 – N_{Py} and Φ_{Ar}	60.5	105.5	101.1	98.3, 93.5, 82.6
C_{Ar} – CH_2 – N_{Py} and Φ_{Py}	78.8	97.1	96.0	82.6, 85.0, 99.2
Φ_{Ar} and Φ_{Py}	112.0	112.9	113.2	67.6, 69.5, 70.4

Download English Version:

https://daneshyari.com/en/article/1443790

Download Persian Version:

https://daneshyari.com/article/1443790

<u>Daneshyari.com</u>