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a b s t r a c t

Solute segregation to grain boundaries is considered by modeling solute atoms as misfitting inclusions
within a disclination structural unit model describing the grain boundary structure and its intrinsic stress
field. The solute distribution around grain boundaries is described through FermieDirac statistics of site
occupancy. The susceptibility of hydrogen segregation to symmetric tilt grain boundaries is discussed in
terms of the misorientation angle, the defect type characteristics at the grain boundary, temperature, and
the prescribed bulk hydrogen fraction of occupied sites. Through this formalism, it is found that
hydrogen trapping on grain boundaries clearly correlates with the grain boundary structure (i.e. type of
structural unit composing the grain boundary), and the associated grain boundary misorientation.
Specifically, for symmetric tilt grain boundaries about the [0 0 1] axis, grain boundaries composed of both
B and C structural units show a lower segregation susceptibility than other grain boundaries. A direct
correlation between the segregation susceptibility and the intrinsic net defect density is provided
through the FrankeBilby formalism. Overall, the present formulation could prove to be a simple and
useful model to identify classes of grain boundaries relevant to grain boundary engineering.

© 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Solute-atom segregation to grain boundaries (GBs) and other
microstructural line defects such as dislocations substantially af-
fects their fundamental physico-chemical properties, e.g. grain
boundary energy [1e3], grain boundary mobility [4e7], and grain
boundary cohesion [8e10], which in turn impacts a wide range of
material behaviors including strain aging [11e13], intergranular
fracture [14,15], recrystallization [16,17], and creep [18,19]. The
chemical equilibrium distribution of solutes in a solid determines
the interaction between these solutes and defects already existing
in a material system and plays a key role in the nature of the sub-
sequent mechanisms governing the behaviors listed above.

It has been established, both experimentally [8,20e22] and
theoretically [11,23e27], that solute equilibrium depends on the
intrinsic character of the defect considered and its associated pre-
existing stress field. Of particular theoretical interest, Cai et al.
[27] recently clarified the formalism of how the equilibrium
configuration of solutes should depend on the stress field in an
isotropic elastic solid. This formulation models the chemical

equilibrium distribution of point defects as non-overlapping
spherical inclusions with purely positive dilatational eigenstrain.
This formulation excludes the self-stress of the inclusions (hydro-
static stress found inside the inclusion), but accounts for the image
stresses introduced to satisfy the boundary conditions in a finite
solid. The solute distribution around a given defect d follows Fer-
mieDirac statistics on the hydrostatic stress field produced by the
defect considered, the stress fields generated by other defects, and
stress field generated by external loads. This non-uniform distri-
bution of solutes around a defect d is accompanied by a coherency
stress preserving the coherency of the crystal lattice. In an infinite
isotropic elastic medium it has been shown [24,27] that the co-
herency stress is directly proportional to the local concentration of
solutes and the solute distribution throughout the entire solid.

Most of the theoretical treatments concerning the interaction
between solute atoms and defects focus on dislocation-type defects
[11,24,27e32]. For example, Cottrell and Bilby [11,28,29] and later
work extended by others [24,27,31,32] have examined the equi-
librium solute distribution around a single infinitely long straight
dislocation. In the case of an edge dislocation, the total depletion of
solutes shows a logarithmic dependence beneath the glide plane.
Webb [30] extended this theory to the case of dislocation walls or
small angle grain boundaries by summing the contributions of an
array of individual lattice dislocations as classically defined in
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dislocation theory [33]. However, dislocation-type analyses are
limited to simple representations of low-angle boundaries and are
not adequate for large-angle boundaries, low symmetry crystals,
very short boundaries of any angle and other types of more com-
plex defects like triple junctions.

Another paradigm which can be used to model more compli-
cated grain boundary structures in terms of linear defects instead
constructs grain boundaries using disclinations [34e41].
Disclination-based models are fully equivalent to dislocation
models in terms of their stress and strain fields, and are also
particularly advantageous for obtaining the mechanical field of a
general grain boundary where dislocation cores would overlap as is
the case for large angle GBs. Similarly, models of other complex
defects such as triple junctions [40] or the structure of zigzag tilt
GBs [38] can be constructed using disclinations. Such defects are of
particular interest since they constitute stress concentrators within
any given microstructure potentially providing additional driving
force for solute segregation.

The present analysis, which is based on the formalism suggested
by Cai et al. [27], treats solute atoms as misfitting spherical in-
clusions and considers their interactionswith (tilt) grain boundaries
(about the [0 01] axis). The adoptedmodel accounts for the complex
structure of grain boundaries through disclination-based models
and considers thematerial as linear, elastic, and isotropic. Hydrogen
segregation to grain boundaries is explored for a wide variety of
grain boundaries. Of particular interest, correlations between grain
boundaries' segregation susceptibility, the grain boundary misori-
entation and the grain boundary structural character is investigated.
The susceptibility to hydrogen segregation of symmetric tilt grain
boundaries is discussed in termsof themisorientation angle and the
intrinsic grain boundary defect type characteristics.

The manuscript is thus organized as follows. Section 2 details
the construction of grain boundaries using disclination theory and
the resulting solute distribution. Section 3 discusses the correlation
between solute concentration and the grain boundary defect
characteristics. Conclusions are drawn concerning the application
of this model in Section 4.

2. Solute distribution around grain boundaries

As mentioned in Section 1, so-called superatomic (mesoscopic)
disclination-basedmodels provide a convenient way of representing
grain boundary behavior under various loading conditions using
linear theory of defects. Wedge disclination dipoles are the basic
ingredients of such models [39]. As illustrated in Fig. 1 (a), dis-
clinations are linear rotational defects [42] for which, similar to the
way dislocations are characterized in continuum mechanics using
the Burgers vector, the strength of a disclination is related to an axial
pseudo vector u! (Frank's vector) defining the rotation between two
cut surfaces. The elastic fields of straight disclinations in an elastic
infinite isotropic medium can be found in analytical form based on
the general linear elastic theory of defects [43,44]. Following deWit
[43], the stress field s8ij ðx; yÞ of a pure wedge disclination located at
the origin with a Frank's (pseudo) vector magnitude (or strength) u
(see Fig. 1) is given in a Cartesian coordinate system by:

s8xx x; y;uð Þ ¼ D0u ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2
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s8zz x; y;uð Þ ¼ n s8xx x; yð Þ þ s8yy x; yð Þ
h i

; (4)

where r2 ¼ x2þy2, m is the shear modulus, n is the Poisson's ratio
and D0 ¼ m/2p(1�v).

Note that the logarithmic divergence of the long-range stress
fields of a wedge disclination implies that disclinations can exist
only in a screened state by configuring straight disclinations in
dipoles or other multipole configurations. The stress field of such
arrangements can be found by superposition of the contributions
from individual straight disclinations. As such, the stress field
s⋈ij ðx; yÞ of a disclination dipole (u, L) centered at y¼ 0 with positive
disclination þu at (0, L) and negative disclination �u at (0, �L) (see
Fig. 1(b)) is given by:

s⋈ij x; y;u; Lð Þ ¼ s8ij x; y� L;uð Þ � s8ij x; yþ L;uð Þ : (5)

2.1. Construction of grain boundaries using the disclination
structural unit model (DSUM)

Originally proposed by Shih and Li [34,35] and later improved by
Gertsman et al. [36], the disclination structural unit model (DSUM)
constructs a (non-favored) grain boundary with a misorientation
angle q by decomposing it into a contiguous and alternating
sequence of special (favored) m majority and n minority structural
units with associated misorientation angles qm and qn respectively
such that qm < q < qn. Favored boundaries are grain boundaries that
have a structure characterized by a repeating sequence of only one
type of structural units. As a result the boundary is represented in
the form of a complex wall of disclinations combined into dipoles
associated with the minority structural units (see Fig. 2(a)). The
strength of the disclination dipoles associated with the minority
structural unit is equal to ±u ¼ ±(q n� qm), the arm of the dipoles is
fixed and set to L0n, and the period of the grain boundary is given by
H ¼ ðmd0m þ nd0nÞ ¼ 2ðmL0m þ nL0nÞ.

As illustrated in Table 1 [45e47], all symmetric tilt grain
boundaries about the [0 0 1] axis can be decomposed into primary
structural units that are consistent with the four favored [0 0 1]
symmetric tilt grain boundaries: the A structural unit S1 (1 1 0)/
q ¼ 0� perfect lattice, the B structural unit S5 (2 1 0)/q ¼ 36.87�

grain boundary, the C structural unit S5 (3 1 0)/q ¼ 53.13� grain
boundary, and the D structural unit S1 (1 0 0)/q ¼ 90� perfect lat-
tice. Thus, all symmetric tilt grain boundaries about the [0 0 1] axis
with a misorientation 0�� q < 36.87� are composed of only A and B
structural units, all boundaries with a misorientation
36.87� � q < 53.13� are composed of only B and C structural units,
and all boundaries with a misorientation 53.11� � q < 90� are
composed of only C and D structural units. Additionally due to the
geometric distortions of the (favored) elementary structural units
composing a given (non-favored) grain boundary (see Fig. 2(b)), the
dimensions L0m and L0n can be evaluated from the rest length of the
structural units Lm and Ln through the geometric relation [48],

L0m ¼ Lmcos
q� qm

2

� �
; L0n ¼ Lncos

qn � q

2

� �
; (6)

while the average misorientation angle q is given by,

sin q=2ð Þ ¼ 2mLmsin qmð Þ þ 2nLnsin qnð Þ½ �
H

: (7)
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