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a b s t r a c t

A three dimensional (3D) elastoplastic phase-field model is developed for modeling the hydrostatic
pressure-induced alpha e omega phase transformation and the reverse phase transformation, i.e. omega
e alpha, in zirconium (Zr). Plastic deformation and strain hardening of the material are also considered in
the model. The microstructure evolution during both phase transformations is studied. The trans-
formation start pressures at different temperatures are predicted and are plotted as a phase diagram. The
effect of phase transformations on the mechanical properties of the material is also studied. The input
data corresponding to pure Zr are acquired from experimental studies as well as by using the CALPHAD
method. Our simulations show that three different omega variants form as laths. On release of pressure,
reverse phase transformation initiates at lath boundaries. We observe that both phase transformations
are martensitic in nature and also occur at the same pressure, i.e. little hysteresis. The transformation
start pressures and the kinetics of the transformation predicted by our model are in good agreement with
experimental results.

© 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Zirconium (Zr) and its alloys are used as structural materials in
nuclear reactors and are also used in the chemical industry. These
structural components need to withstand a wide range of tem-
peratures and pressures. Thus the components have to be carefully
fabricated by a combination of different thermomechanical pro-
cesses such that a desired microstructure and mechanical proper-
ties are obtained. Different phase transformations and
consequently different phases can occur in the component during
its fabrication and during its service. This can adversely affect the
mechanical properties and can lead to failure of the product. Hence,
a thorough understanding of microstructural evolution and phase
stability of Zrealloys is essential.

The three phases that mainly form in Zrealloys are a, b and u

with crystal structures hexagonal close packed (hcp), body
centered cubic (bcc) and hexagonal, respectively. In pure Zr, the
alpha phase (a) transforms to omega phase (u) under high static
pressure or during shock loading [1,2], whereas at high tempera-
tures the a phase transforms to b phase [3]. The u phase can also

form from beta (b) phase either athermally (by rapid quenching or
stress-induced) or isothermally (by holding the material at a con-
stant temperature below 773 K) in Zrealloys [2,4].

Zirconium, when used as a structural material in a nuclear
reactor, can be subjected to high static pressure. This can lead to the
formation of brittle u phase and can affect the mechanical prop-
erties of thematerial. Hence, it is essential to study the co-evolution
of microstructure andmechanical properties as well as measure the
transformation start pressures during the hydrostatic pressure-
induced a � u phase transformation in pure Zr using in-situ tech-
niques. However, the difficulties associated with experimental set-
ups in achieving pure hydrostatic conditions can affect the phase
transformation kinetics as well as the transformation start pres-
sures, due to the presence of shear stresses in the quasi-hydrostatic
environment [5,6].

Although constitutive models have been used to study the
relation between phase transformation and plasticity [7e9], the
recent advances in modeling the microstructure evolution by using
the phase-field method [10,11] are promising and can aid in the
study of the a � u phase transformation under hydrostatic pres-
sure. Several studies on solid state phase transformations using the
phase-field approach have advanced this research area [12e32].
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Microelasticity theory, i.e. Phase-field microelasticity theory pro-
posed by Khachaturyan [12], is an important advancement in this
field. An alternative approach is developed by using the Ginz-
burgeLandau formulation in terms of strain order parameters and
by enforcing the compatibility condition of strains to ensure that
the displacement field is continuous [13,20]. This is in contrast to
solving the displacement equations in terms of non-strain order
parameters, as proposed by Khachaturyan [12]. Another important
advancement is the inclusion of plasticity within the phase-field
approach [14,21,24,25,33]. Due to these advances, it is possible to
study the interplay between the martensitic microstructure evo-
lution, internal stresses, strains and plastic strains. In our recent
work, we have studied the athermal b � u phase transformation in
ZreNb alloys [26]. However, the a� u phase transformation in pure
Zr under hydrostatic pressure has not been studied by using the
phase-field approach.

In the present work the hydrostatic pressure-induced alpha
(hcp) to omega (hexagonal) diffusionless phase transformation
occurring in a single crystal of pure Zr is studied. A three dimen-
sional (3D) phase-field model is developed by including plasticity
and strain hardening within the Phase-field microelasticity theory
[14,21,25]. The finite element method (FEM) is applied to solve the
phase-field as well as the continuum mechanics equations. The
effects of application and release of hydrostatic pressure on the
microstructure evolution, as well as on the mechanical properties
of the material, are studied. The transformation start pressures at
different temperatures within the alphaeomega phase field are
predicted. The phase diagram predicted by our model is consistent
with that obtained from measurements using probes such as third
generation light sources [34]. Our results also indicate that at 300 K,
both forward and reverse phase transformations occur in a
martensitic manner and at the same pressure. On pressure release,
reverse phase transformation initiates at lath boundaries. Negli-
gible plastic strain is retained in the material after the reversion of
u to a, which is in agreement with experimental results.

2. Elastoplastic phase-field model

Martensitic transformation can be modeled using the
CahneAllen equation [35], also known as the Time-Dependent
GinzburgeLandau kinetic equation [12]. The microstructure evo-
lution can be simulated by predicting the time-dependent variation
of the phase-field variable hp, which in turn is related to the
minimization of the Gibbs energy G of the system with respect to
the phase-field variable as:

vhp
vt

¼ �
Xq¼v

q¼1

Lpq
dG
dhq

(1)

where dG/dhq is a variational derivative that serves as a driving force
for the formation of the product phase denoted by the phase-field
variable hq, which is dependent on the position vector r. v is the
total number of crystallographic orientations of the product phase
and Lpq is a kinetic parameter.

The phase transformation of alpha (a) (hexagonal close packed,
hcp) to omega (u) (hexagonal structure) causes asymmetry in the
crystal structure and thereby gives rise to three possible crystallo-
graphic orientations (variants) of u. Thus, in order to represent the
three possible variants, three phase-field variables, i.e. h1, h2, h3,
need to be considered in the model. Hence three phase-field
equations, i.e. for p¼ 1,2,3 and v¼ 3 in Eq. (1), need to be solved
at each time step. Each of the above three variants is governed by a
stress-free transformation strain tensor ε0ijðpÞ.

From a thermodynamic point of view, the Gibbs energy of a

system undergoing a pressure-induced phase transformation con-
sists of the following parts:

G ¼
Z
V

�
Gchem
v þ Ggrad

v þ Gel
v þ Gappl

v

�
dV (2)

Gchem
v corresponds to the chemical part of the Gibbs energy density

of an unstressed system at the temperature under consideration.
Ggrad
v is the extra Gibbs energy density caused by the interfaces. Gel

v

is the elastic strain energy density, generated due to the structural
phase transformation of a � u. Gappl

v is the extra Gibbs energy
density caused by the externally applied load.

2.1. Chemical energy, Gchem
v

The chemical part of the Gibbs energy density Gchem
v , expressed

as a Landau-type polynomial [14,17], is given by:

Gchem
v ðh1; h2;h3Þ ¼

1
Vm

�
1
2
A
�
h21 þ h22 þ h23

�
� 1
3
B
�
h31 þ h32 þ h33

�

þ 1
4
C
�
h21 þ h22 þ h23

�2�
(3)

By considering the driving force DGm, i.e. the difference in the
Gibbs energies of alpha and omega phases, and the Gibbs energy
barrier DG* terms in the above equation, the coefficients are
modified [14] as: A¼ 32DG*, B¼ 3A� 12DGm and C¼ 2A� 12DGm.
Here DG*¼ Vmb/2d2, where Vm is molar volume, d is thickness of the
interface and b relates to interfacial energy and is discussed in the
following section.

2.2. Gradient energy, Ggrad
v

The gradient energy density term, Ggrad
v can be expressed as

[14,17]:

Ggrad
v ¼ 1

2

Xp¼v

p¼1

bijðpÞ
vhp
vri

vhp
vrj

(4)

where r(x,y,z) is the position vector expressed in cartesian co-
ordinates, bij is the gradient coefficient matrix expressed in terms of
the interfacial energy g, molar volume Vm and Gibbs energy barrier
DG*. In the present work isotropic interfacial properties are
considered, i.e. bij is considered as a diagonal tensor with all the
elements equal to b [14], given as:

b ¼ 9g2Vm

16DG� (5)

2.3. Elastic energy, Gel
v

In order to calculate the elastic strain energy density Gel
v , the

elastic stress needs to be calculated by using the Microelasticity
theory [12], which is briefly explained below. The martensitic
transformation gives rise to deformation of the crystalline lattice
and thereby induces stress-free transformation strains ε

0
ijðrÞ into

the material. The surrounding parent matrix exerts strain εij(r) on
the product phase to resist the stress-free transformation strains
and thereby induces elastic strain ε

el
ij ðrÞ, which in turn gives rise to

elastic stress sij(r), in the material. When the elastic stress exceeds
the yield limit of the material, plastic deformation initiates and
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