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Abstract—In this study we have incorporated the local nonequilibrium term into the Gibbs equation to obtain the local nonequilibrium correction to
the driving force for solidification of binary alloys. The local nonequilibrium correction has been used to calculate the effective liquidus slope and the
interface temperature for the model with and without solute drag effects. It has been demonstrated that both the local nonequilibrium correction and
the solute drag play the most important role in the intermediate rage of the interface velocity V. When V increases up to V D, where V D is the char-
acteristic diffusive velocity, a sharp transition to completely diffusionless and partitionless solidification occurs, which implies that the local nonequi-
librium correction and the solute drag effects can be ignored. The transition is accompanied by a sharp change in the effective liquidus slope and the
interface temperature as functions of interface velocity. The model was applied to describe initial transient and steady-state solidification of Si–As
alloy and a good agreement between the model predictions and the available experimental data was obtained.
� 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

In the past few decades, modeling of rapid solidification
and solute trapping has gained attention for its role in
many modern solidification processes such as thermal
spraying, spin coating, and laser melting [1–3]. At deep
undercooling the solidification process involves extremely
fast heat and mass transfer at very small time and length
scales, which implies that the process occurs under far from
equilibrium conditions [3–30]. In such a case the classical
thermodynamics cannot be applied due to violation of the
local-equilibrium hypothesis and the local-nonequilibrium
theory should be used. The most popular version of the
local-nonequilibrium thermodynamics is the so-called
extended irreversible thermodynamics (EIT) [31], which
includes dissipative fluxes in the set of independent vari-
ables. Review of some other local nonequilibrium
approaches can be found in [6,7,20,32–35]. It is remarkable
that all the extended approaches lead to a hyperbolic diffu-
sion equation as the simplest generalization of the classical
diffusion equation of parabolic type to the local nonequilib-
rium case. The local-nonequilibrium transfer equation of
hyperbolic type has been used to describe traveling waves
of phase transformations under far from local equilibrium
conditions [6]. This approach has been successfully applied
to rapid solidification of binary alloys [8–12]. It has been
demonstrated that the local nonequilibrium diffusion effects

are responsible for a sharp transition from diffusion con-
trolled to diffusionless solidification with complete solute
trapping at a finite interface velocity [8–12]. In recent years
the local nonequilibrium diffusion approach has been
extended to study different types of solute trapping models
[13–16], rapid colloidal solidification [17], non-equilibrium
dendrite growth [18,29,30], multicomponent alloy solidifi-
cation [19], space nonlocal effects due to diffusion-stress
coupling in liquid phase [20,21], solute drag effects [23–
26], morphological stability [27,28], nonlinear liquidus
and solidus [23,27,29,30]. The interface velocity V is related
with the kinetic driving force for the interface motion DG
through the reaction rate theory as

V ¼ V 0½1� expð�DG=RT Þ� ð1Þ
where DG is the free energy change per mole between the
solid and liquid phases, i.e. the driving force for solidifica-
tion, R is the gas constant, T is the interface temperature,
V 0 is the interface velocity at an infinite driving force.
Under local nonequilibrium condition DG can be repre-
sented as [10,36]

DG ¼ DG0 þ DGneq ð2Þ

where DG0 is the local equilibrium part of the Gibbs free
energy change, which can be calculated using classical irre-
versible thermodynamics, and DGneq is the local nonequilib-
rium correction to the Gibbs free energy change, which
arises due to local nonequilibrium effects and should be cal-
culated on the basis of EIT [31]. The additional term, DGneq,
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was taken into account for calculation of the effective
liquidus slope [26], which has been widely used in theoreti-
cal modeling of rapid alloy solidification but some uncer-
tainties exist [23,27–30]. In this paper we calculate the
local nonequilibrium correction to the change in free energy
of transformation during rapid alloy solidification using
EIT approach. We also calculate the effective liquidus slope
and the interface temperature with allowance for the local
nonequilibrium and solute drag effects and compare the
model predication with available experimental data.

2. Local nonequilibrium thermodynamic functions

2.1. Local nonequilibrium entropy and free energy for binary
system

The local nonequilibrium Gibbs equation for binary
system is [31]:

Tds ¼ duþ pdq�1 � ldC � saq�2D�1JdJ ð3Þ
where T is temperature, s is a local specific entropy, C is
concentration of component 1, a ¼ @l=@C, l ¼ l1 � l2,
li is chemical potential of component, s is relaxation time
to local equilibrium of the diffusion flux J, D is diffusion
coefficient, q is mass density, p is pressure, u is specific inter-
nal energy. The local nonequilibrium correction to the clas-
sical Gibbs equation is represented by the last term in Eq.
(3), which arises due to the diffusion flux J and depends
on its relaxation time to local equilibrium s. If the charac-
teristic time of the process t0 � s, the nonequilibrium cor-
rection is small and can be ignored. In this case Eq. (3)
reduces to the classical (local equilibrium) Gibbs equation.
Far from local equilibrium t0 � s and the nonequilibrium
correction should be taken into account. Integration of
Eq. (3) allows one to obtain the local nonequilibrium
Gibbs free energy G in the form [31]

G ¼ G0 þ Gneq

where G0 is the local-equilibrium Gibbs free energy, and
Gneq is the local non-equilibrium correction, which is given
as

Gneq ¼ J 2 s
2Dq2

@l
@C

� �
ð4Þ

The local nonequilibrium entropy can be written in the
analogous form:

S ¼ S0 þ Sneq

Sneq ¼ �J 2 s
2Dq2T

@l
@C

� �

2.2. Local nonequilibrium correction to the driving force for
solidification

The local nonequilibrium correction to the driving force
for solidification in Eq. (2), DGneq, is the difference between
the local nonequilibrium correction to the Gibbs free
energy in the liquid (L) Gneq

L and in the solid (S) Gneq
S .

Using Eq. (4) one can obtain

DGneq ¼ J 2
L

s
2D
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Taking into account that the solute diffusion flux in the
solid phase is very small in comparison with that in the liq-
uid phase, the nonequilibrium corrections for the driving
force for solidification at the interface can be written as

DGneq ¼ J 2
L

s
2D

@l
@C

� �
ð5Þ

Note that all the parameters in these expressions refer to
the liquid phase. Thus the local nonequilibrium driving
force for solidification and the entropy change at the
interface of binary mixture take the form

DG ¼ GL � GS ¼ DG0 þ J 2
L

s
2D

@l
@C

� �
ð6Þ

For ideal solution Eq. (5) reduces to

DGneq ¼ s RTJ 2
L=2DCL ð7Þ

The mass balance law leads to the following interface
condition

V ðCL � CSÞ ¼ J L � J S ð8Þ
where V is interface velocity. Taking into account that J S is
much smaller than J L, Eq. (8) gives J L ¼ VCLð1� KÞ, where
K ¼ CS=CL is solute partition coefficient. Substituting this
expression for JL in Eq. (7), we obtain the nonequilibrium
corrections to the Gibbs free energy change:

DGneq ¼ CLRT ð1� KÞ2V 2=2V 2
D ð9Þ

where V D ¼ ðD=sÞ1=2 is the characteristic diffusion velocity
[8–10]. Thus the total Gibbs free energy change at the inter-
face during rapid alloy solidification with allowance for the
local nonequilibrium effects is given as

DG=RT ¼ DG0=RT þ CLð1� KÞ2V 2=2V 2
D ð10Þ

2.3. Steady-state regime

The exact mathematical treatment of the rapid alloy
solidification problem may be found by solving the
time-dependent governing equations, subject to appropri-
ate initial and boundary conditions. But to avoid mathe-
matical difficulties the steady-state approximation is
usually used. The steady-state assumption assumes that
after a short initial transient period the solid–liquid inter-
face begins to move with constant velocity and the solute
concentration is time-independent in the reference frame
attached to the interface. Steady-state assumption signifi-
cantly simplifies the mathematical formulation of the prob-
lem. Strictly speaking, the mathematical analysis shows
that steady-state solidification takes an ‘infinite’ amount
of time and distance to be achieved [1]. The local nonequi-
librium approach gives the estimate of the characteristic
time tst to achieve steady-state as follows [22]:

tLNDM
st ¼ cDð1� V 2=V 2

DÞ=KV 2; V < V D ð11Þ
here c is a constant such as at t ¼ tst the interface solute
concentration in the liquid is about 70% and 90% of the
steady state concentration for c ¼ 1 and c ¼ 2, respectively
[1]. When V P V D, alloy solidification occurs in the diffu-
sionless regime, which implies that tLNDM

st ¼ 0. Eq. (11)
implies that the local nonequilibrium effects shrink the
initial transient period in binary alloy solidification and
for many practical situations, especially at high interface

S.L. Sobolev / Acta Materialia 93 (2015) 256–263 257



Download	English	Version:

https://daneshyari.com/en/article/1445245

Download	Persian	Version:

https://daneshyari.com/article/1445245

Daneshyari.com

https://daneshyari.com/en/article/1445245
https://daneshyari.com/article/1445245
https://daneshyari.com/

