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a b s t r a c t

Upon nitriding of iron-based alloys, development of misfitting coherent nitride precipitates in a ferrite
matrix induces an overall expansion of the ferrite lattice. This lattice expansion was quantitatively deter-
mined by X-ray diffraction from the change of the lattice parameter of ferrite of homogenously nitrided
FeACr and FeAV alloys. Adopting the experimentally verified (by X-ray diffraction and transmission elec-
tron microscopy) notion that the misfitting precipitates diffract coherently with the matrix, the extent of
this hydrostatic lattice-strain component could be calculated, in general, as function of the precipitate/-
matrix misfit, the volume fraction of precipitates and the elastic properties of the matrix and precipitates.
The experimentally observed and the predicted dependencies of lattice dilatation agree very well for both
nitrided FeACr and FeAV alloys. This is the first time that this type of lattice expansion was experimen-
tally identified and quantitatively explained.

� 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Solid-state phase transformations involving volume misfit
between parent and product phases can induce unusual,
non-equilibrium phenomena, such as, the establishment of
metastable phases (e.g. cubic AlN in a ferrite matrix [1,2]),
non-monotonous variation of transformation rate (e.g. during
austenite–ferrite and austenite–martensite transformations [3–
5]), unusual morphologies (as octapod shaped, amorphous
silicon-nitride particles in a ferrite matrix [6]). These effects are
often attributed to the complex interplay of the chemical Gibbs
energy change driving the transformation and the deformation
energy associated with volume misfit accommodation [7,8].
Precise understanding of the effects of misfit-strain energies on
the thermodynamics and kinetics of phase transformations and
on the resulting microstructure is essential to optimize the proper-
ties of engineering components [9].

The elastic strain fields surrounding individual (tiny) precipi-
tates have been exposed by transmission electron microscope
(TEM) diffraction-contrast images [10–12] which allow (local)
determination of the sign and (approximate) magnitude of the

occurring misfit. The lattice distortions associated with
misfit-strain fields induce diffuse scattering in X-ray diffraction
(XRD) experiments [13], which can be used to reveal characteris-
tics of the strain fields around (very) small precipitates [14]. The
presence of misfitting inclusions of larger dimensions induces
(X-ray) diffraction-line broadening, characteristic for the presence
of microstrains [13,15,16]. However, it is not generally recognized
that the (average, overall) lattice-parameter values of misfitting
systems are different from their (misfit) strain-free values, thereby
exposing the presence of a (hydrostatic) macrostrain. Thus,
straightforward determination of the lattice parameter (e.g. from
the peak position in (X-ray) diffractograms) provides important
information not only on the course of a precipitation process by
compositional change of the parent matrix, but also on the extent
of the developing misfit-strain fields. The last feature plays a cardi-
nal role in the present work.

The state of stress invoked by misfitting inclusions in a matrix
has been dealt with largely theoretically in the literature [17–
20]. Experimental verification of such theoretical predictions is rel-
atively rare: adopting a theory for point imperfections in a solid
matrix, the effect of misfitting precipitates on the lattice distor-
tions of the matrix, and in one case also of the precipitates, was
investigated for the case of incoherent precipitate/matrix interfaces
[21–23]. Since this early work, no further development and appli-
cation of this approach appears to have taken place.
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Against the above background, the present work is devoted to
prediction and experimental verification of lattice distortions
introduced upon the development of misfitting second-phase par-
ticles in a solid matrix, with (largely) coherent precipitate/matrix
interfaces, employing X-ray diffraction. To this end, systems com-
posed of misfitting nitride particles in a ferrite matrix, as develop-
ing during internal nitridation of iron-based alloy substrates
(FeACr and FeAV alloys), have been chosen as model systems.
The tiny CrN and VN precipitates are (largely) coherent with the
ferrite matrix [24–27] and yet exhibit pronounced volume misfit
with the matrix. The coherency of the precipitate/matrix interface
gives rise to peculiar diffraction effects involving coherent diffrac-
tion of the assembly precipitate plus matrix (so no precipitate
reflections occur) and asymmetrically broadened diffraction-line
profiles. It will be shown that the effect of misfit strain is sensi-
tively expressed in lattice-parameter changes and that good agree-
ment between theoretically predicted and experimentally
measured data can be achieved.

2. Elastic strain field in a misfitting system: lattice-parameter
changes

A continuum theory for the fully elastic accommodation of the
misfit of a point imperfection in a matrix has been presented by
Eshelby [28,29]. The theory was developed to (also) predict the
slope of the dependence of the lattice parameter of a crystalline
solid solution on solute content (cf. Vegard’s law [30]). However,
for this application the theory failed, as electronic interaction on
the atomic scale can be dominant over elastic straining effects
[18]. Therefore, the theory is more likely applicable to the case of
precipitation of misfitting second-phase particles. On this basis,
cases of particle-matrix misfit strain for elastically anisotropic
matrices could be dealt with leading to the prediction of
precipitate-particle shape [17,31–33].

In the following subsections, formulae are presented that
describe the changes of the relative volume/lattice-parameters of
the matrix (Section 2.1), the misfitting particles (inclusions;
Section 2.2) and of the assembly, i.e. matrix plus misfitting parti-
cles (inclusions; Section 2.3).2

2.1. Change of the lattice parameter of the matrix

Insertion of the undeformed inclusions B in the holes of the
matrix A leaves the whole assembly in a state of self-stress.
Considering (i) a finite matrix A containing, in the strain-free con-
dition, holes of radius r0

A and (ii) particles B, of strain-free radius
r0

B, the relative volume increase of the matrix A due to the insertion
of the misfitting inclusions B into the holes of the matrix A can be
written as [18]:
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where n is number of inclusions B per unit volume and K and l
represent the bulk modulus and the shear modulus, respectively.

The linear misfit parameter, e, can be calculated from

r�B � r�A
� �

=r�A ¼
ffiffiffiffiffiffi
v0

B
3
q

�
ffiffiffiffiffiffi
v0

A
3
q� �. ffiffiffiffiffiffi

v0
A

3
q

, where v0
B and v0

A are the molar

volumes of the strain-free precipitate particle and the matrix,
respectively. The volume fraction of inclusion yB can be taken as

yB ¼ 4p r
�
B

� �3n=3. For the case of a matrix of cubic crystal structure
with a (strain-free) lattice parameter aA, DVA=VA can be approxi-
mated by 3DaA=aA, and Eq. (1) can be rewritten as [21]:

DaA ¼
4lAC6

3KA

e
ð1þ eÞ3

yBaA ð3Þ

It is important to note that the matrix is of finite dimensions. In
an infinite matrix, the volume change of the matrix due to the
introduction of misfitting inclusions is zero (the matrix only expe-
riences shear strains); then, the volume change of the assembly is
fully confined to the precipitates. The matrix dilatation that is pre-
dicted for a matrix of finite size is a consequence of the image
forces required to achieve a stress-free surface of the finite
assembly.

2.2. Change of the lattice parameter of the misfitting phase

A misfitting inclusion with a radius larger or smaller than that
of the hole in the matrix will experience hydrostatic compression
or tension, respectively. For the case of a finite assembly of matrix
A plus misfitting inclusions B, the fractional volume change of the
inclusions can be written as [23]:
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For the case of precipitates of cubic crystal structure with a
(strain-free) lattice parameter aB, DVB=VB can be approximated
by 3DaB=aB, and it follows for the change of the lattice parameter,
DaB, of the misfitting second phase:
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The total relative volume change of the inclusions results from
the sum of the fractional volume change of the inclusions in an
infinite assembly (first term in Eqs. (4) and (5)) and the fractional
volume change of the inclusions due to the image forces acting
(also) on the inclusions in a finite assembly (second term in
Eqs. (4) and (5)).

2.3. Change of the lattice parameter of the assembly (matrix plus
misfitting phase)

The relative volume change of the whole, finite assembly com-
prising the finite matrix and the misfitting inclusions can be given
as [18]:
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For an aggregate of cubic crystal structure and a (strain-free)
lattice parameter a, thus approximating DV=V by 3Da=a, the
resulting change of the lattice parameter, Da, of the aggregate for
a volume fraction yB precipitate particles B is given by:

Da ¼ C6

C 06

e
ð1þ eÞ3

yBa ð8Þ

2 In the derivations of the following formulae, in order to calculate the image force
term for a finite matrix and a finite assembly, it is assumed that the volume fraction of
misfitting particles is small: only the matrix elastic constants are used to calculate the
image force term for matrix and assembly. Further, the matrix and the misfitting
particles are taken to be elastically isotropic.
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