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Abstract—A new 3D continuum model is developed to simultaneously describe cracks and dislocations in materials undergoing finite strain defor-
mations. Significant advances are made to account for fracturing in a cubic symmetrical system and to correctly model the microscopic dislocation
properties into a Time-Dependent Ginzburg–Landau formalism. In addition, the interaction between dislocations and free borders (crack lips, sur-
faces. . .) is naturally described. As an example, the model is used to investigate the effects of plasticity on the delamination and buckling of thin films
deposited on substrates. It may also be helpful in any other situation where cracks and dislocations take place and in which finite strain effects must
be considered.
� 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Generally, alloys and metals used in industry are materi-
als which exhibit strong heterogeneities since they are com-
posed of a microstructure that couples a wide variety of
multiscale physical phenomena. In some alloys for exam-
ple, the formation of precipitates is observed at a microme-
ter scale while, at a lower scale, they appear as obstacles to
the motion of dislocations manifesting as a drastic change
of the macroscopic mechanical properties [1]. Interfaces
between two phases also constitute preferential sites for
the damage to occur, especially because they localize stress
concentrations that often result in the spontaneous forma-
tion of microcracks and dislocations [2]. Similar phenom-
ena are also identified in coating devices where
microscopic mechanisms induce delamination and buckling
of structures standing themselves at a micrometer scale
[3,4].

Numerically, in strategies which consist of describing
these coupled phenomena, simulations operating at the dis-
crete atomic scale seem to be the most relevant. However,
these methods are often computationally expensive and,
despite their constant improvements, it seems that they
never allow the investigation of macroscopic objects at rea-
listic space and time scales.

Therefore, alternative descriptions have been intro-
duced, taking advantage of numerical progress and the
recent development of new methods, among which is the

phase-field. Within this framework, an element of the
microstructure is described as a region of space with specific
physical properties wherein a field subject to certain
dynamics reflects its presence or not at a given point of
the material. At the beginning of the last decade, these
methods, already used to investigate phase transformations
[5], have been extended to describe crystal defects such as
cracks [6–9] and dislocations [10–15].

Today, these methods are used to solve problems involv-
ing cracks and dislocations taken independently, often cou-
pled with other kinds of fields related to other physical
mechanisms [16,17]. However, to our knowledge, none of
these studies explicitly couple cracks and dislocations
together. This challenge is nevertheless essential in material
science since the macroscopic damage of materials is most
likely the result of the coupling between such fundamental
mechanisms [18]. Moreover, the finite strain effects are usu-
ally not considered in the description of that kind of phe-
nomena, except for dislocations in Ref. [19], which is
nevertheless crucial in some cases [20].

In this paper, we propose a continuum model describing
quasi-static microcracks and dynamic dislocations within
an elastic framework formulated at finite strain. The cou-
pling between these objects is achieved in a physical way,
within a numerical description that allows the considera-
tion of heterogeneities and free-surfaces. As an example,
the model is used in the buckling context which requires
one such description.

The paper is organized in two sections. In the first, the
finite strain continuum model for fracturing is exposed
and illustrated with simple examples. In the second, the
model is extended to account for plasticity in a Time-
Dependant Ginzburg–Landau formalism also formulated
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at finite strain. The coupling between cracks and
dislocations is finally achieved and subsequently used in
the buckling context.

2. Continuum model for fracturing

2.1. Elastic background

The model reproduces the behavior of cubic symmetrical
materials within the linear elasticity theory. The total free
elastic energy F el is then defined by the following func-
tional [21]:

F el ¼
Z

V
f elðrÞdV ; ð1Þ

where V is the volume of the material and f el is the free
elastic energy density defined at position r by:

f el ¼
K
2

e11 þ e22 þ e33ð Þ2

þ C0

3
e11 � e22ð Þ2 þ e11 � e33ð Þ2 þ e22 � e33ð Þ2

h i
þ l

2
2e12ð Þ2 þ 2e13ð Þ2 þ 2e23ð Þ2

h i
: ð2Þ

In Eq. (2), eij denotes the strain tensor components and
K;C0 and l are the bulk modulus, the shear modulus and
the second Lamé coefficient, respectively. These moduli
are position-dependent to account for different materials
within a single system. It is worth noting that C0 and l
are equal to each other in the isotropic case.

In a fixed Cartesian frame X ið Þi¼1;3, finite effects are
taken into account through the Green–Lagrange strain ten-
sor whose components are:

eijðrÞ ¼
1

2
bijðrÞ þ bjiðrÞ þ

X3

k¼1

bkiðrÞbkjðrÞ
 !

; ð3Þ

where bij are the displacement-gradients:

bijðrÞ ¼
@uiðrÞ
@X j

; ð4Þ

in which ui are the displacement vector components. It is
worth mentioning that the use of linear elasticity with finite
strains is only justified in situations where large rotations
are involved and where physical phenomena (cracks,
dislocations. . .) prevent large stretching to occur.

The mechanical equilibrium is obtained with a dissipa-
tive dynamic in which the temporal variation of the dis-
placements ui is proportional to the functional derivative
of the free elastic energy F el with respect to ui (i.e. the
mechanical force):

@uiðr; tÞ
@t

¼ �M
dF el

duiðr; tÞ
: ð5Þ

where M is a dissipative coefficient for the elastic field and
F el is the functional of the free elastic energy given Eq. (1).
Thus, inertial effects are not involved in the present model.

2.2. Numerical implementation

Numerically, the continuum fields are discretized on a
cubic grid whose nodes are places where displacements ui

are expressed and cubic volumes are elementary “voxels”
where strains eij (or equivalently the elastic energy) are cal-
culated. Thus, any material is seen as a juxtaposition of ele-
mentary voxels that contain an elastic energy contribution.

In Fig. 1, one of these voxels is displayed to highlight in
more detail how the elastic energy is calculated. Each sum-
mit is related to three length elements dX j labeled from 1 to
4 in the first direction of space, from 5 to 8 in the second
and from 9 to 12 in the third. The eight summits of the
voxel are nodes localized in their current position with
coordinates xi, indexed using the alphanumerical notation
aðþ1Þ; bðþ1Þ and cðþ1Þ. The displacement-gradients bij
defined in Eq. (4) are calculated by using a finite difference
scheme where each component is identified to a length
change along i of an element dX j. For example, if we focus
on the first summit with elements dX 1ð1Þ, dX 2ð5Þ and
dX 3ð9Þ, the following identification is obtained:

bi1 �
xiðaþ 1; b; cÞ � xiða; b; cÞ

dX 1ð1Þ
; ð6Þ

bi2 �
xiða; bþ 1; cÞ � xiða; b; cÞ

dX 2ð5Þ
; ð7Þ

bi3 �
xiða; b; cþ 1Þ � xiða; b; cÞ

dX 3ð9Þ
; ð8Þ

which explicitly gives the displacement-gradients tensor for
this summit. This tensor allows us to determine the Green–
Lagrange strain tensor (see Eq. (3)) from which the elastic
energy is calculated (see Eq. (2)). An elastic energy is thus
established for each summit of the voxel that represents
an eighth of its total elastic energy f vox. By fixing elements
dX j at the same length d, the elastic energy density given by

Eq. (2) is finally identified as f el ¼ f vox=d3. It is worth men-
tioning that d is a grid spacing which does not (yet) have
physical meaning. This length must simply be greater than
the local radius curvature to prevent any numerical
artifacts.

To obtain the mechanical equilibrium, each node of the
grid is assumed to be in the environment of its closest eight
voxels. The total elastic energy at the position of a node
f node is thus the sum of the eight elastic contributions f el
of these voxels. By conserving these notations, Eq. (5)
finally rewrites as:
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a+1,b+1,c

1+c,b,1+a1+c,b,a

a+1,b+1,c+1a,b+1,c+1

1

12

2
65

4

3
78

11

109

d

X2X3
X1

Fig. 1. Schematic of a voxel whose summits are nodes represented by a
gray disk and edges are length elements dX j. The grid spacing (the
edges of the cube) has been fixed at d.
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