

Available online at www.sciencedirect.com

ScienceDirect Acta Materialia 82 (2015) 123–136

www.elsevier.com/locate/actamat

Phase strength effects on chemical mixing in extensively deformed alloys

Zachary C. Cordero and Christopher A. Schuh*

Department of Materials Science and Engineering, MIT, Cambridge, MA 02139, USA

Received 21 June 2014; revised 27 August 2014; accepted 3 September 2014 Available online 3 October 2014

Abstract—Forced chemical mixing during extensive straining requires that the constituent phases co-deform, and is therefore a sensitive function of their mechanical properties, particularly strength. To develop a quantitative understanding of such phase strength effects on co-deformation and steady-state chemical mixity during severe deformation processing, we studied several tungsten–transition metal couples with a range of differences in strength during a process of mechanical alloying in a high-energy ball mill. Changes in the powders' microstructures, mechanical properties and chemical mixing revealed two distinct behaviors: alloys either chemically homogenized or remained dual phase, depending on the relative strengths of the base alloying elements. A kinetic Monte Carlo simulation of mechanical alloying that accounts for a phase strength mismatch reproduced the experimentally observed behaviors, and provides quantitative insight into the combination of material and processing parameters that control mechanical mixing.

© 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Keywords: Mechanical alloying; Non-equilibrium solid solutions; Powder processing; Kinetic Monte Carlo; Alloy design

1. Introduction

The steady-state microstructure that evolves after the application of extensive plastic strains to alloys often comprises non-equilibrium phases or configurations [1-3]. This is generally true for most modes of severe plastic deformation [4–9], and is of particular relevance to conventional mechanical alloving [10,11]. Such non-equilibrium microstructures evolve out of a competition between recovery processes, which tend to restore the microstructure toward the equilibrium state, and deformation-related processes. which drive it away from equilibrium [12]. By adjusting the ratio of the recovery rate to the deformation rate, the steady-state microstructure can be made more or less metastable [13]. Increasing the temperature while keeping the milling intensity constant, for example, generally increases the recovery rate relative to the deformation rate, and this typically leads to microstructures closer to equilibrium [14]. Conversely, lowering the temperature so that recovery is kinetically suppressed leads to microstructures with nonequilibrium features such as supersaturated solid solutions of normally immiscible alloying elements. Such forced mechanical mixing to a non-equilibrium condition is often the explicit goal of the process.

Although there are examples of immiscible couples (e.g., Cu–Co [15] and Ag–Cu [16]) that form solid solutions during mechanical alloying, others remain phase-separated over a range of compositions despite being milled at low

homologous temperatures (e.g., Cu-W [17] and Cu-Ta [18]). One reason that some couples remain dual phase is that plastic deformation occurs preferentially in the softer phase, and as a result, atoms are not sheared across the interphase interface [19,20]. Thus, alloying elements must co-deform for deformation-induced mixing to occur, and one way to encourage co-deformation is to mechanically alloy elements with "similar" mechanical properties [11]. For dual-phase metallic systems with coarse microstructures, it is also well established that the amount of co-deformation depends not just on the individual phases' mechanical properties but also on microstructure, and specifically the two phases' volume fractions and geometries [21–24]. For example, in alloys with a small volume fraction of a hard element, the softer element can flow around the hard element without the hard element deforming; however, this becomes more difficult as the volume fraction of the hard element increases [25].

Hong and Fultz [26] and others [13,27] have suggested that microstructure and mechanical properties can influence the amount of deformation-induced mixing during mechanical alloying. There have also been several recent molecular dynamics studies investigating the effect of the alloying elements' mechanical properties on the mechanisms of deformation-induced mixing [19,28–30]. But while there are many isolated data points, some empirical rulesof-thumb and qualitative discussion about the roles of the constituent phases' mechanical properties and the couple's microstructure in mechanical alloying, we are not aware of a general quantitative heuristic by which mixable couples (or conditions under which couples can become mixable)

^{*} Corresponding author; e-mail: schuh@mit.edu

http://dx.doi.org/10.1016/j.actamat.2014.09.009

^{1359-6462/© 2014} Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

can be predicted. Our purpose in this paper is to provide a step towards such a view through systematic study by both experiment and simulation. Experimentally, we track the microstructure, mechanical properties and amount of co-deformation and mixing in several W-transition metal couples subjected to mechanical alloying. Computationally, we adapt a classical Bellon-Averback kinetic Monte Carlo simulation of mechanical alloying [31-33] to demonstrate how a difference in phase strength leads to multiply stable steady states. The results together point to the possibility of understanding preferred conditions for forced mechanical mixing.

2. Materials and methods

2.1. Powder processing

Elemental W, Cr and Zr as well as several equiatomic $W_{50}TM_{50}$ alloys (TM = Cr, Nb, Ni, Hf or Zr) were milled in a SPEX 8000 high-energy ball mill. The powders were acquired from Alfa Aesar, and had the following purity and sizing: W, 99.95%, -200 + 325 mesh; Cr, 99+%, -325 mesh; Zr, 99.6%, -325 mesh; Nb, -325 mesh, 99.8%; Ni, 99.996%, -120 mesh; Hf, 99.6%, -325 mesh. We selected W as the base alloying element because the maximum temperature encountered in a SPEX ball mill $(\sim 100 \text{ °C } [2])$ is just 10% of its melting temperature. As a result, interdiffusion in the $W_{50}TM_{50}$ couples is, to a good approximation, kinetically suppressed, and structural evolution only proceeds through plastic deformation. The alloying elements were selected because their maximum hardnesses (once refined into a nanocrystalline state) ranged from a low of 6 GPa (Zr [34]) to a high of 16 GPa (Cr), as compared to 22 GPa for W.

The $W_{50}TM_{50}$ alloys were prepared by mechanically alloying elemental feedstock powders. All of the milling runs were conducted using a steel vial and grinding media with a ball-to-powder ratio of 5:1 (10 g powder). To prevent oxidation, the milling was performed in a glovebox maintained under an ultra-high-purity Ar atmosphere. To monitor the structural evolution of the powder particles, ~0.2 g of the powder was removed periodically for subsequent characterization.

2.2. Microstructural and chemical characterization

The grain size and lattice parameter of the W-rich, bodycentered cubic (bcc) phase was tracked with milling time using X-ray diffraction (XRD). XRD patterns were collected using a Cu K_{α} source Panalytical X'Pert Pro operated at 45 kV and 40 mA. The lattice parameter, which can be used to infer the amount of solute dissolved in the W and therefore the degree of mixing, was measured using Rietveld refinement. The grain size was calculated from the peak broadening using a Williamson–Hall analysis after correcting out the contribution from instrumental broadening using a NIST LaB₆ standard.

Following XRD, the powders were cold-mounted in epoxy, rough ground and polished; polishing concluded with a colloidal silica suspension. Energy dispersive spectroscopy (EDS) was performed on these mounted samples using a JEOL 6610-LV scanning electron microscope operated at 20 kV, to measure the amount of Fe contamination due to abrasion of the steel vial and media. The total amount of Fe contamination as a function of milling time for the various couples and pure W is shown in Fig. 1. We highlight the W, $W_{50}Cr_{50}$ and $W_{50}Nb_{50}$ data in red to emphasize that these powders had a similar amount of Fe contamination, which was greater than that of the $W_{50}Zr_{50}$, $W_{50}Hf_{50}$ and $W_{50}Ni_{50}$ powders, highlighted blue.

The concentration of solute, x, dissolved in the bcc W phase was calculated from the measured lattice parameter using Vegard's law:

$$X_{solute} = \frac{(a_{bcc} - a_{W})}{(a_{solute} - a_{W})} - \frac{x_{Fe}(a_{Fe} - a_{W})}{(a_{solute} - a_{W})}$$
(1)

where x_{Fe} is the concentration of Fe dissolved in the W and $a_{\rm W}$, $a_{\rm Fe}$, a_{solute} and $a_{\rm bcc}$ are the pure W, pure Fe, pure solute and measured lattice parameters, respectively. The first term in this expression is the standard form of Vegard's law for a binary couple, and the second term is added as a correction to account for the pickup of iron from the milling media and vial. The alloying elements' lattice parameters are given in Table 1; note that estimated bcc lattice parameters were used for the non-bcc alloying elements: Zr, Hf and Ni. We estimated $x_{\rm Fe}$ by multiplying the global concentration of Fe in the as-milled powder (Fig. 1) by the fraction of Fe dissolved in the W phase. The fraction of Fe dissolved in the W phase was calculated from a control experiment in which we milled initially pure W, and measured the global concentration of Fe using EDS and the concentration of Fe in the W lattice using Vegard's law with milling time. The ratio of these quantities gave the fraction of Fe dissolved in the W, which we assumed to be the same for pure W and the $W_{50}TM_{50}$ couples for a given milling time.

The $W_{50}Cr_{50}$ and $W_{50}Zr_{50}$ couples were down-selected for a more in-depth investigation of their microstructure using scanning electron microscopy (SEM) and dark field

Fig. 1. Fe contamination as measured using EDS in the initially pure W and W-transition metal powders as a function of milling time. The W, $W_{50}Cr_{50}$ and $W_{50}Nb_{50}$ powders are harder than the $W_{50}Ni_{50}$, $W_{50}Hf_{50}$ and $W_{50}Zr_{50}$ powders, and abrade more Fe as a result.

Download English Version:

https://daneshyari.com/en/article/1445508

Download Persian Version:

https://daneshyari.com/article/1445508

Daneshyari.com