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Abstract—This paper describes a way to deduce the orientation relation occurring in phase transformation by only considering three misorientations
between variants inherited from the same parent grain at a triple point. The method, named XABX, can be successfully applied even in materials
deformed before phase transformation. This new approach, developed for investigating orientation relations in steels, is easily transposable for
studying orientation relations of other phase transformations.
� 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Phase transformations strongly influence the microstruc-
tures of materials and consequently their mechanical prop-
erties through the orientation relations (ORs) between
parent and child phases and spatial arrangement of selected
variants. Therefore, the knowledge of accurate characteris-
tics of the phase transformations is important. In this
framework, the most precise determination of the ORs
allows us to investigate the phase transformation condi-
tions and types. For example, in steel transformations,
the ORs between austenite and the child phase can be dif-
ferent from the classical Nishiyama–Wassermann (NW)
or Kurdjumov–Sachs (KS) ORs [1–7]. The direct determi-
nation of the ORs requires that a sufficient amount of the
parent phase is retained at room temperature [1,2]. When
this is not the case, the evaluation of the OR can be per-
formed by considering the coincidence of high indices pole
figures (PFs) of experimental and calculated data [3,4,8].
Using this procedure in a first step, Miyamoto et al. [8] pre-
sented a numerical method to evaluate the OR occurring in
the steel phase transformation. Following a similar
approach, an analytical method to determine the OR has
also been proposed [9]. Until now, all methods operating
without retained parent phase implicitly assume that the

orientation is constant within the parent grain. However,
in deformed materials, orientation gradients exist. In the
presence of such orientation variations, the later methods
do not correctly operate. The method presented here
applies even when the later methods do not operate cor-
rectly. It uses the local misorientations between variants
to deduce the OR between the vanished parent and the
child phase. We have named this method XABX after the
formulae which allow the problem to be solved. Two appli-
cation examples are presented: one to validate the method
on a synthetic microstructure, the other on ausformed
martensite.

2. Working hypotheses and equations

In this section, we derive the equations that allow the
determination of the OR under two hypotheses. These
hypotheses are further discussed in Section 4.

Let us consider the parent grain whose boundaries are
the bold line shown in Fig. 1. The orientation of a point
located at ri is characterized by a rotation matrix ½gcðriÞ�.
After complete transformation, this parent grain
transforms into several spatial domains (variants) whose
boundaries are the thin lines. The variant orientations are
defined by rotation matrices ½gaðriÞ� .

In general, the relation between the parent and the child
orientations can be expressed by a product of rotation
matrices:

½gaðriÞ� ¼ ½gcðriÞ�½PðriÞ�½DgðriÞ�½CðriÞ� ð1Þ

http://dx.doi.org/10.1016/j.actamat.2014.09.007
1359-6462/� 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

⇑Corresponding author at: Laboratoire d’Etude des Microstructures
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in which ½PðriÞ� is one element of the nP rotational symme-
try elements of the parent phase, ½CðriÞ� one element of the
nC rotational symmetry elements of the child phase and the
rotation ½DgðriÞ� corresponds to the OR between the parent
and the child phase at location ri.

Let us now consider three points [r1, r2, r3] located at a
triple point which belong to the same parent grain (Fig. 1).
The links between parent and child orientations read:

½gaðr1Þ� ¼ ½gcðr1Þ�½Pðr1Þ�½Dgðr1Þ�½Cðr1Þ�
½gaðr2Þ� ¼ ½gcðr2Þ�½Pðr2Þ�½Dgðr2Þ�½Cðr2Þ�
½gaðr3Þ� ¼ ½gcðr3Þ�½Pðr3Þ�½Dgðr3Þ�½Cðr3Þ�

ð2Þ

The first hypothesis we made is that the parent orienta-
tions do not vary (or only vary very slightly) across the
variant boundaries:

½gcðr1Þ� ¼ ½gcðr2Þ� ¼ ½gcðr3Þ� ¼ ½gc� ð3Þ

The constancy of ½gc� in the vicinity of a triple point
allows Eqs. (2) to be combined so that ½gc� disappears.

After some easy manipulations, the following expres-
sions can be found:

½gaðr2Þ��1½gaðr1Þ� ¼ ð½P 2�½Dgðr2Þ�½C2�Þ�1ð½P 1�½Dgðr1Þ�½C1�Þ
½gaðr3Þ��1½gaðr1Þ� ¼ ð½P 3�½Dgðr3Þ�½C3�Þ�1ð½P 1�½Dgðr1Þ�½C1�Þ
½gaðr2Þ��1½gaðr3Þ� ¼ ð½P 3�½Dgðr3Þ�½C3�Þ�1ð½P 2�½Dgðr2Þ�½C2�Þ

ð4Þ
At this stage, a second hypothesis is introduced. We

assume that the local ORs remain close to each other and
thus close to a mean OR:

½DgðriÞ� ffi ½Dg�
This leads to a replacement of Eqs. (4) by:

½gaðr2Þ��1½gaðr1Þ� ffi ð½P 2�½Dg�½C2�Þ
�1ð½P 1�½Dg�½C1�Þ

½gaðr3Þ��1½gaðr1Þ� ffi ð½P 3�½Dg�½C3�Þ
�1ð½P 1�½Dg�½C1�Þ

½gaðr3Þ��1½gaðr2Þ� ffi ð½P 3�½Dg�½C3�Þ
�1ð½P 2�½Dg�½C2�Þ

ð5Þ

To simplify the notation we put ½P 1�½Dg�½C1� ¼ ½Dg0�,
which corresponds to an equivalent mean OR.

Then Eqs. (5) become:

½gaðr2Þ��1½gaðr1Þ� ffi ð½P 02�½Dg0�½C02�Þ
�1½Dg0�

½gaðr3Þ��1½gaðr1Þ� ffi ð½P 03�½Dg0�½C03�Þ
�1½Dg0�

½gaðr3Þ��1½gaðr2Þ� ffi ð½P 03�½Dg0�½C03�Þ
�1 ½P 02�½Dg0�½C02�
� � ð6Þ

which can be reformulated as:

½Dg0�½C02�½gaðr2Þ��1½gaðr1Þ� ffi ½P 02�
�1½Dg0�

½Dg0�½C03�½gaðr3Þ��1½gaðr1Þ� ffi ½P 03�
�1½Dg0�

½Dg0�½C03�½gaðr3Þ��1½gaðr2Þ�½C02�
�1 ffi ½P 03�

�1½P 02�½Dg0�
ð7Þ

In this system, the inputs are the misorientations
between three variants; the unknowns are ½Dg0� and the
symmetry elements.

3. Orientation relation calculation

The general form of Eqs. (7) is X � Ai ffi Bi � X (hence
the name given to our the method) where Ai and Bi are
functions of experimental data and of rotational symmetry
elements and X stands for ½Dg0�.

In this case, the mean local OR X, ½Dg0�, must minimize
the following error function:

E ¼
X

i

kX � Ai � Bi � Xk2 ð8Þ

with the constraint kXk2 ¼ 1 because X is a rotation
matrix. In these expressions, kk defines the Euclidean norm.
The error function E is null if Eqs. (7) are equalities. But E
may differ slightly from zero in the case of a small gradient
of the parent orientation and/or in the case of variations of
the local ORs.

The way to find out the value X which minimizes the
error function E (Eq. (8)) is described in the Appendix. It
passes through the use of quaternions whose properties
are well adapted for this type of equation [10]. As shown
in the Appendix A, the error function can be associated
to a real positive (4 � 4) matrix whose components are
function of the quaternions representing the rotations Ai

and Bi. The four eigenvalues of this matrix (sorted from
the largest: k1 to the smallest: k4) determine four values
of the error function: k4 leads to the smallest value of Eq.
(8) and its corresponding eigenvector stands for the OR X.

The symmetry elements P 0i and C0i entering Ai and Bi are
a priori not known. Therefore to find out X, we minimize
the error function (Eq. (8)) for all combinations (C02, C03,
P 02, P 03) of the nP symmetry elements ½P i� and nC symmetry
elements ½Ci�. So the number of these calculations is
nT ¼ ðnC � nP Þ2.

Some data analysis is required to retain only the real OR
among the nT results. Let k4min be the minimum of the nT

k4s. All results having k4 close to k4min are potential solu-
tions. If one of the potential solutions has k3 very close to
k4, the system is underdetermined. In other words, it cannot
be solved because at least two identical misorientations
have been given as input data. If k4min is greater than
k4CRIT then no OR relation exists within a given tolerance.
The choice of k4CRIT is related to the deviation with which
Eqs. (7) is respected; this is discussed in Section 4.

The potential solutions should be filtered because they
contain symmetry equivalents of the OR. The remaining

Fig. 1. The points of interest are located at a triple junction between
three variants inherited from the same parent grain.
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