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Abstract—The Monte Carlo model is one of the most frequently used approaches to simulate grain growth, and retains a number of features that
derive from the closely related Ising and Potts models. The suitability of these features for the simulation of grain growth is examined, and several
modifications to the Hamiltonian and transition probability function are proposed. The resulting model is shown to not only reproduce the usual
behaviors of grain growth simulations, but to substantially reduce the effect of the underlying pixel lattice on the microstructure as compared to
contemporary simulations.
� 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The Monte Carlo (MC) method is one of the main com-
putational approaches used in the study of grain growth
and related phenomena, and has provided useful qualita-
tive insights into these processes for several decades.
Derived from the Ising and Potts models of ferromagnetic
systems, MC models represent a material as a collection
of area or volume elements endowed with spins and
arranged on a regular lattice. A grain is defined as a contig-
uous collection of material elements with the same spin,
and the microstructure is evolved by probabilistic rules to
propagate the spin of a given element to the neighboring
ones.

Originally formulated in the context of microstructure
evolution by Anderson et al. [1], the MC model quickly
proved useful in the study of the grain growth microstruc-
ture [2], of stagnation in the presence of second-phase par-
ticles [3], of the effect of anisotropic boundary energies [4],
and of the factors leading to abnormal grain growth [5–7].
Furthermore, the relative simplicity of the formulation
allowed various implementations of the model to be
extended for other purposes as well. For example,
three-dimensional versions have been used to investigate
the variations in grain structure around welds [8] and the
effect of texture and texture evolution during grain growth
on the microstructure [9], to evaluate a mean-field theory
for the grain size distribution [10], and to support an

analytical model for disordered cellular structures inspired
by thermodynamic considerations [11].

Certain modifications of the underlying algorithm have
been proposed to improve the computational efficiency of
the model. The most important of these is the kinetic MC
method, occasionally known in the materials science
literature as the n-fold way algorithm. The fundamental
observation is that using a variable time step equal to the
interval required for the system configuration to change is
often more efficient than using a constant time step and
repeatedly proposing changes that may be rejected. While
initially developed for the Ising model [12], the same
approach may be applied to the MC model of grain growth
[13]. This has the additional advantage that the kinetic MC
method is readily parallelized [14,15], allowing the simula-
tion of statistically significant volumes of material.

Unfortunately, the standard formulation of the MC
model should not be used if predictive simulations of
material behavior are required [16]. There are three main
reasons for this assertion. First, the probabilistic rules used
by the Monte Carlo method to update the system configu-
ration do not have any physical basis. When initially
formulated by Metropolis et al. [17], the purpose of the
MC method was to model the distribution of states of a
microscopic system in thermodynamic equilibrium. The
rule for changing the configuration was chosen on the basis
of mathematical simplicity, subject to the condition that the
system sample states are at frequencies consistent with the
canonical ensemble. By contrast, a microstructure is a
macroscopic system far from thermodynamic equilibrium.
A change of configuration is interpreted as grain boundary
migration and should be subject to the corresponding
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kinetics, not to relations defined only for mathematical
convenience.

Second, the quantities appearing in MC models do not
have well-defined units, precluding the direct comparison
of simulation results with experiments. For example,
material elements have arbitrary spatial dimensions, time
is measured in arbitrary units, and the temperature appear-
ing in the Metropolis dynamics is meaningful only in the
context of the type of simulations performed by Metropolis
et al. [17]. This situation is caused by the absence of any
suitable kinetic relations in the formulation of the model.
While at least one analytic [18] and several numerical
[19,20] approaches to assign units to the simulations have
been proposed, none appears to have been widely adopted
by the computational materials science community.

Third, the use of a lattice of material elements intro-
duces an inherent anisotropy into the simulations. This
causes various unphysical phenomena, including grain
boundary faceting, deviations of the dihedral angles along
triple lines, and grain growth stagnation. The consensus
in the literature [21–24] seems to be that the anisotropy
may be mitigated by carefully selecting the underlying
lattice, by using a fictitious temperature high enough to
introduce limited grain boundary roughening, or by
increasing the interaction cutoff distance between material
elements. None of these is entirely satisfactory though.
The number of available lattices is limited, the temperature
must be calibrated to balance the effects of unphysical
boundary faceting with unphysical boundary roughening,
and increasing the interaction distance dramatically accel-
erates the disappearance of small microstructural features.

The primary purpose of this paper is to reduce the
inherent anisotropy of the MC model. Since the absence of
a physical basis for the standard MC model means that
nothing is sacrosanct, we make two modifications to the
underlying algorithm. First, the strength of the element
interactions is allowed to vary as a function of the element
separation, rather than being a constant for all elements
within the cutoff distance. Second, the configuration is
updated by choosing one of several proposed configurations
with a function that depends smoothly on the energy change,
rather than accepting or rejecting a single proposed configu-
ration with a function constructed only for mathematical
convenience.

The performance of the modified MC model is com-
pared to that of a standard MC model by analyzing the
microstructures resulting from grain growth simulations.
Specifically, we consider the distribution of grain boundary
normal directions and the deviations of the rate of change
of grain areas from the von Neumann–Mullins relation
[25,26]. Comparing these with corresponding quantities
for a truly isotropic material reveals that the modified
MC model reduces the inherent anisotropy of the lattice
significantly more than the standard MC model, and is
therefore preferable to the standard MC model in practice.

2. Traditional Monte Carlo

The history of the MC method is briefly reviewed, with
particular emphasis on the source of the algorithm. This will
help to identify a set of features that may safely be changed
without violating any fundamental mathematical or thermo-
dynamic constraints, and serves as motivation for the modi-
fications to the algorithm proposed in Section 3.

2.1. Ising and Potts models

The Ising and Potts models are mathematical models
most often used to study phase transitions in ferromagnetic
systems, and have a long history in statistical physics [27].
Assume that a regular lattice of particles endowed with
magnetic spins inhabits a two-dimensional (2-D) region
with periodic boundary conditions. The spin of a given par-
ticle interacts magnetically with the spins of neighboring
particles, and possibly with an external magnetic field.

The study of this system is usually restricted to the
expected distribution of states in the canonical ensemble.
The interaction of neighboring particles effectively pre-
cludes an analytical solution, however [28], meaning that
the expected distribution of states is usually evaluated by
sampling as a given configuration moves through the state
space. A set of rules to guide the evolution of the initial
configuration is provided by either Glauber dynamics [29]
or Metropolis dynamics [17].

The Ising and Potts models (and MC grain growth mod-
els) are customarily described within the framework of the
Metropolis algorithm. This means that the usual formula-
tions have the following three features:
1. The Hamiltonian provides the energy of a configura-

tion of the system. It is generally constructed from the
sum of finite-range pairwise interactions and should
be non-negative, bounded and translation invariant.

2. The proposal distribution is the conditional probabil-
ity distribution of the proposed configuration of the
system in the following time step, given the current
system configuration. It is often assumed to be a uni-
form distribution on the adjacent states in the config-
uration space.

3. The acceptance distribution (often known as the tran-
sition probability) is the conditional probability to
accept the proposed configuration of the system in
the following time step, given the current system
configuration.
These three features of the Ising and Potts models will be

described in further detail below to help clarify the histori-
cal underpinnings of the MC grain growth model.

The Hamiltonian used by the Ising and Potts models in
the absence of an external magnetic field is most often of
the form:

H ¼ 1

2

X
i

J
X

j

ð1� dsisjÞ; ð1Þ

where the outer sum is performed over all spins, J is the
energy penalty between spins of different orientations, the
inner sum is performed over the spins in a standard neigh-
borhood around the ith spin, and dsisj is the Kroneker delta,
equal to one whenever the states si and sj of the ith and jth
spins are the same and to zero otherwise. Notice that the
energy of a configuration with all spins aligned is zero,
and that the energy penalty for spins of different states is
halved in Eq. (1) because of double-counting.

The inner summation in Eq. (1) will be called the kernel
of the Hamiltonian, while the coefficient of the kernel will
be called the energetic coefficient and the argument of the
inner summation will be called the weighting function.
The kernel is distinguished by being closely related to the
change in the energy of the system when the state of a single
spin is changed. Specifically, changing the state of the ith
spin changes the system energy by:
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