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Abstract

In recent years, our research group has formulated a new framework called materials knowledge systems (MKS) for establishing
highly accurate reduced-order (surrogate) models for localization (opposite of homogenization) linkages in hierarchical materials sys-
tems. These new computationally efficient linkages are designed to capture accurately the microscale spatial distribution of a response
field of interest in the representative volume element (RVE) of a material, when subjected to an imposed macroscale loading condition. In
prior work, the viability and computational advantages of the MKS approach were demonstrated in a number of case studies involving
multiphase composites, where the local material state in each spatial bin of the RVE was permitted to be any one of a limited number of
material phases (i.e. restricted to a set of discrete local states of the material). In this paper, we present a major extension to the MKS
framework that allows a computationally efficient treatment of a significantly more complex local state of the material, i.e. crystal lattice
orientation. This extension of the MKS framework is formulated by the use of suitable Fourier representation of the influence functions.
This paper describes this new formulation and the associated calibration protocols, and demonstrates its viability with case studies
comprising low and moderate contrast cubic and hexagonal polycrystals.
� 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Virtually all materials of interest to emerging advanced
technologies exhibit complex hierarchical internal struc-
tures (hereafter generically referred to as microstructures).
The successful design and manufacture of new/improved
materials with vastly enhanced properties or performance
characteristics are contingent on the availability of a com-
putational framework that efficiently bridges the relevant
hierarchical length/structure scales in the material (also
referred to as hierarchical multiscaling) [1–5]. In most
hierarchical multiscaling approaches, the focus has thus
far been in communicating the effective properties to the

higher length scales, i.e. on homogenization. There is often
very little information passed in the opposite direction, i.e.
localization. As an example, localization may involve the
spatial distribution of the response field of interest (e.g.
stress or strain rate fields) at the microscale (on a represen-
tative volume element) for an imposed loading condition at
the macroscale.

In recent years, our research group has formulated a
novel, computationally efficient, bi-directional, scale-bridg-
ing framework called materials knowledge systems (MKS)
[6–11]. In the MKS framework, the focus is on expressing
the localization relationships of interest in the form of a
simple algebraic series whose terms capture systematically
the individual contributions from a hierarchy of local
microstructure descriptors. The specific form of the alge-
braic series used in the MKS approach is adopted from
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the well-established statistical continuum theories [12–16].
In both of these approaches (MKS and the statistical con-
tinuum theories), the localization linkage takes the form of
a series where each term is expressed as a convolution
product of a physics-capturing kernel with a higher-order
local microstructure descriptor. However, the main differ-
ence between the two approaches is that the localization
linkage in the MKS approach is calibrated to datasets
obtained from established numerical approaches for the
materials phenomena of interest. For example, in studies
of micromechanical phenomena, the physics-capturing ker-
nels in the MKS linkages are calibrated to results obtained
from finite element models for a diverse set of example
microstructures. The most impressive benefit of the MKS
approach lies in the dramatic reduction of the computa-
tional cost, often by several orders of magnitude compared
to numerical approaches typically employed in microstruc-
ture design problems. The MKS methodology has thus far
been successfully applied to capturing thermo-elastic stress
(or strain) distributions in composite representative volume
elements (RVEs), rigid-viscoplastic strain rate fields in
composite RVEs and the evolution of the composition
fields in the spinodal decomposition of binary alloys
[7,8,10].

Whilst MKS has enjoyed several remarkable successes
thus far, it is still in its early stages of development. Almost
all of the case studies explored thus far have been restricted
to composite material systems with a limited set of discrete
local material states (i.e. two-phase or three-phase micro-
structures). However, most materials of interest in emerg-
ing technologies exhibit local states that are much more
complicated. For example, most advanced structural mate-
rials exhibit polycrystalline microstructures, where the spa-
tial distribution of the crystal lattice orientations at the
microscale plays an important role in controlling their
effective properties. High throughput evaluation of the
responses of a large set of microstructures (as one might
need in optimizing the material performance in a selected
application) with such complex local states requires a
major extension of the MKS framework that allows effi-
cient treatment of tensorial local states (e.g. crystal lattice
orientation) and their associated continuous local state
spaces. In this regard, it should be recognized that it is pos-
sible to treat continuous local states simply by binning the
continuous local state space (as described in our earlier
work [7]). However, a primitive binning of the local state
space is expected to prove highly inefficient, computation-
ally, in capturing accurately the localization linkages of
interest, especially in situations where the microscale
response in the material microstructure shows high sensi-
tivity to the local state (e.g. plastic response of crystalline
states).

This paper presents the needed extension to the theoreti-
cal framework of the MKS approach to allow a rigorous
treatment of the crystal lattice orientation as the local state
variable. This is accomplished through the use of general-
ized spherical harmonics (GSHs) [17] for capturing the

orientation dependence of the influence kernels in the
MKS linkages. It should be noted that GSHs have already
been demonstrated to produce highly efficient and compact
spectral descriptions of functions defined on the orientation
space in other applications in prior literature [2,11,18–32].
The viability of the new MKS formulation developed in this
work is demonstrated with case studies on selected cubic and
hexagonal polycrystalline material systems.

2. Review of MKS framework

The MKS framework is built on a digital description of
the microstructure, where the spatial domain of the micro-
structure (presumably identifying a representative volume)
and the corresponding local state space (the set of all pos-
sible local states that may be encountered in the micro-
structure) are both uniformly binned using suitable
invariant measures [33]. Let s ¼ 1; 2; . . . ; S enumerate the
spatial bins (or voxels) in the microscale volume of interest.
Similarly, let h ¼ 1; 2; . . . ;H enumerate the local states of
interest in a multiphase composite material system. With
this notation, the digital representation of the microstruc-
ture function, denoted as mh

s , reflects the volume fraction
of local states identified by h in the spatial bin s. Digital
representations of the microstructure function described
here have already been successfully employed in many
applications, including the fast computation of microstruc-
ture metrics and variance [2,34,35], automated identifica-
tion of salient microstructure features in large datasets
[2,36], determination of representative volume elements
from an ensemble of datasets [37–40], microstructure
reconstructions based on statistical correlation functions
[16,41–44] and the establishment of processing–structure–
property linkages [7–11,15,19,20,45–50].

The form of the localization relationships in the MKS
framework is adopted from Kroner’s statistical continuum
theories [12,13,16] and can be expressed as [7–9,11,49]:
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where ps denotes the local response in the spatial cell of
interest s and hpi represents the corresponding macroscopic
quantity (imposed at the macroscale). It is noted that all of
the MKS formulations to date have been designed such
that hpi is indeed the volume average of the ps over the
entire spatial domain of the microstructure. In other
words, the localization linkages in the MKS formulation
are aimed at capturing the spatial distribution of the quan-
tity imposed at the higher length scale (i.e. hpi) to the lower
length scale (i.e. ps), while conserving the overall amount.
In Eq. (1), ah

t and ahh0
tt0 are referred to as the first-order

and second-order influence coefficients, respectively, and
denote the physics-capturing kernels. First-order influence
coefficients, ah

t , capture the influence of local state h in spa-
tial cell separated by a vector t from spatial cell s. Likewise,
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