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Abstract

We present a physics-based constitutive model of dislocation glide in metals that explicitly accounts for the redistribution of disloca-
tions due to their motion. The model parameterizes the complex microstructure by dislocation densities of edge and screw character,
which either occur with monopolar properties, i.e. a single dislocation with positive or negative line sense, or with dipolar properties,
i.e. two dislocations of opposite line sense combined. The advantage of the model lies in the description of the dislocation density evo-
lution, which comprises the usual rate equations for dislocation multiplication and annihilation, and formation and dissociation of dis-
location dipoles. Additionally, the spatial redistribution of dislocations by slip is explicitly accounted for. This is achieved by introducing
an advection term for the dislocation density that turns the evolution equations for the dislocation density from ordinary into partial
differential equations. The associated spatial gradients of the dislocation slip render the model nonlocal. The model is applied to wedge
indentation in single-crystalline nickel. The simulation results are compared to published experiments (Kysar et al., 2010) in terms of the
spatial distribution of lattice rotations and geometrically necessary dislocations. In agreement with experiment, the predicted dislocation
fluxes lead to accumulation of geometrically necessary dislocations around a vertical geometrical border with a high orientation gradient
below the indenter that is decisive for the overall plastic response. A local model variant without dislocation transport is not able to
predict the influence of this geometrical transition zone correctly and is shown to behave markedly softer.
� 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The indentation of metals is widely used for material
characterization and the derivation of mechanical proper-
ties [1–7]. Although the actual deformation process is sim-
ple, the boundary conditions and kinematics involved are
complex. Accordingly, structure formation below indents
is complex too, rendering the derivation of the correspond-
ing structure–property relationship challenging. Hence, a

thorough understanding of the underlying substructure
evolution associated with indentation is of great
importance.

One reason for the complexity of the deformation state
is its strong variation both in space and time. Since the load
of the indenter is locally applied, high gradients in the
stress, strain and rotation fields naturally arise. As demon-
strated by using 2-D and 3-D electron backscatter diffrac-
tion (EBSD) methods for a sphero-conical indenter, the
loading of the material under the indenter changes with
increasing indentation depth and induces a rapid change
in the activated slip systems in space and time [8–14].
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Variations in the plastic deformation also lead to a het-
erogeneous distribution of dislocations: regions of high
plastic slip activity naturally contain more dislocations
than weakly deformed regions. This relation between slip
and the statistically stored dislocation (SSD) density can
be described well by a local dislocation-based constitutive
model [15–17]. If all dislocation loops are statistically
equally distributed within and among the slip systems, then
on average the signed character of the single dislocation
segments mutually compensate and the ensemble of dislo-
cations is neutral in the sense that no net Burgers vector
(or plastic incompatibility) arises. A gradient in plastic slip,
however, gives rise to an imbalance of dislocation segments
of positive and negative sign, thus building up an excess of
signed dislocations, also referred to as geometrically neces-
sary dislocation (GND) density [18–25]. It is these GNDs
that accommodate gradients in the lattice rotation field.
However, they cannot confidently be predicted by a local
constitutive law, since their origin—namely the redistribu-
tion of dislocations—is inherently nonlocal [26–30].

Initiated by the work of Walgraef and Aifantis [31], a new
simulation approach has emerged in recent years; the so-
called continuum density-based dislocation dynamics
(CDDD) models treat dislocations as continuously defined
dislocation density that evolves in time but also proceeds
in space [32–35]. While similar in spirit, they differ in the
degree of detail for the description of the dislocation density.
A very detailed description is achieved when dislocations are
represented by a higher-order dislocation density tensor that
retains information about the line direction and the curva-
ture [36]. With this description it is possible to formulate
evolution laws for the dislocation density based only on
the motion and balance equations of dislocations. When
supplemented by a kinetic law, this formulation captures
the kinematics of crystal plasticity in fine detail [37]. In order
to reduce the substantial computational effort associated
with such approaches, various simplifications were sug-
gested to reduce this large configuration space: the restric-
tion to two excess densities of edge and screw character
plus their mean curvature and the total dislocation content
[34], a single, but spatially variable line direction plus its
mean curvature [35], the use of four density measures of
straight edge and screw dislocations of opposite signs
[31,33], or one excess density and the total dislocation den-
sity when restricting the model to two dimensions [38].

In our current approach, we develop a model that
includes dislocation transport in a fashion similar to
Arsenlis and Parks [33]. We apply this model to an existing
microindentation experiment in single-crystalline Ni that
was performed by Kysar et al. [39]. This experimental
reference is chosen since the deformed volume in the exper-
iment is, on the one hand, large enough so that statistical
effects such as dislocation source sampling can be
neglected; on the other hand, it is small enough so that
dislocation transport is expected to play a significant role.
We will analyze the effect of the dislocation transport in
the simulations by means of a comparison with a local

model variant without dislocation transport. The compar-
ison to the experimentally obtained results then enables us
to evaluate the generation of GNDs and their role in the
mechanical response of the material.

The paper is organized as follows. In the next section we
present the constitutive model with a description of the dis-
location evolution equations, the dislocation kinetics and
the integration into a finite strain framework. In Section 3
we introduce the setup of the experiment [39] and describe
the implementation in the simulation. Section 4 presents
the results both of the experiment and the simulations. A
comparison of these results and a discussion follows in Sec-
tion 5 with conclusions given in Section 6.

2. Constitutive model

2.1. Continuum mechanical framework of deformation

The description of the kinematics follows the established
continuum mechanical framework of finite strain, as out-
lined, for instance, by Roters et al. [40]. The multiplicative
decomposition of the deformation gradient

F ¼ FeFp ð1Þ
splits the deformation into a purely inelastic (or plastic)
part, Fp, and a remaining “elastic” part, Fe, which accounts
for elastic distortions of the crystal lattice and rigid body
rotations [41]. Based on the right Cauchy–Green deforma-
tion tensor, an elastic strain measure is given by the Green–
Lagrange strain tensor Ee:

Ee ¼
1

2
Fe

TFe � I
� �

; ð2Þ

with I the identity tensor. The second Piola–Kirchhoff
stress S is related to this elastic strain tensor as its work-
conjugate stress measure through:

S ¼ det Fe F�1
e rF -T

e ¼ C : Ee ð3Þ
with C being the fourth-order elasticity tensor and r the
Cauchy stress.

Plastic deformation is driven by S and in the present
case is assumed to be mediated exclusively by dislocation
glide on slip systems defined by two unit vectors n and s
as the slip plane normal and slip direction with the latter
being parallel to the respective Burgers vector b of length
b. The shear rates _cn resulting from corresponding changes
in slipped area on systems n ¼ 1; . . . ;N contribute addi-
tively to the plastic velocity gradient Lp [42]:

Lp ¼
X

n

_cn sn � nn; ð4Þ

which in turn results in an evolution of the plastic deforma-
tion gradient at the rate:

_Fp ¼ LpFp: ð5Þ
The driving force for dislocation motion is provided by the
resolved shear stress sn:
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