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Abstract

A combination of the phase-field method (PFM) and the discrete-element method (DEM) is proposed to simulate simultaneously the
movement of particles and the grain growth behavior in powder compacts during sintering. To take the mutual interaction into consid-
eration, a precise way of coupling PFM and DEM is developed based on a sintering model. The sintering forces and the contact areas in
linked particles are evaluated from the phase field variables, computed in PFM and introduced into the calculation of the rigid motion of
particles in DEM. Before treating actual problems as the application, the sintering process of two particles is simulated first for funda-
mental verification, including the case with different particle sizes. It is confirmed that the changes in the neck size and the center-to-
center distance between particles are reproduced well using the proposed method. Secondly, the simulation of microstructural evolution
during sintering is implemented for some small clusters of particles. The internal spatial structure and the outer shape of the clusters vary
with the shrinkage deformation as well as the grain boundary migration in sintering. The proposed method of simulating the microstruc-
tural evolution in sintering bodies may be effective in the computer-aided design of microscale components or thin films produced by
powder processing.
� 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Current analytical methods of the sintering process can
be divided into three levels – atomic, particle and contin-
uum [1,2] – but may also be roughly categorized into two
groups from the viewpoint of the target. One is the group
for calculating distortion and stress in the sintering body;
the other is suitable for simulating microstructural evolu-
tion, such as grain growth. For analyzing macroscopic
deformation behavior of powder compacts during sinter-
ing, the finite element method (FEM) has been used as a
common numerical technique for treating continuum [3].
On the other hand, the discrete-element method (DEM)
has recently been used for the simulation of the sintering
shrinkage behavior of powder compacts [4–14]. This has

the advantage of taking a network structure of particles
directory into consideration. It is difficult for current work-
stations to treat industrial parts with normal size, but the
application of DEM to the components of microscale
devices may be possible. Conversely, DEM may be a suit-
able tool for computing deformation behavior of micro-
scale components, because it is critically affected by each
particle motion when the powder compacts consist of a
small quantity of particles, that is, no longer a continuum.
The grain boundary migration, however, cannot be dealt
with in DEM itself, though the grain growth is an impor-
tant phenomenon in the sintering process that affects the
shrinkage as well as the microstructure of the components.

For the simulation of grain growth, the Monte Carlo
method is commonly used, and applied to the sintering
process [15,16]. Although the phase-field method (PFM)
has also been applied to it recently [17–19], as a new
numerical technique, there remains the problem of how
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to deal with the rigid motion of particles during the initial
and intermediate stages of sintering. Since it may be diffi-
cult to perform the computation for sintering shrinkage
within the scheme of PFM itself, the author has proposed
a combined phase-field/discrete-element method to simu-
late simultaneously the movement of particles and the
grain growth behavior in powder compacts during sinter-
ing [20]. However, the link-up from PFM to DEM was
not considered in this primary study with a simplified sin-
tering model, where the conjugate force in sintering,
namely the sintering force, was set to be constant, and
the contact area between particles was given by a simple
function of the center-to-center distance.

In the present study, a complete way of coupling PFM
and DEM is proposed based on a precise sintering model.
The sintering forces and the contact areas in linked powder
particles are evaluated from the phase field variables, com-
puted in PFM and taken into consideration in the calcula-
tion of the rigid motion of particles in DEM. Before
treating actual problems as the application, the sintering
process of two particles is simulated first for fundamental
verification, including the case with different particle sizes.
The validity of the calculated results is examined based on
a classical model for the early stage of sintering, as a refer-
ence. Secondly, the simulations of the sintering process are
implemented for some small clusters of particles, as a first
step of applied problems, and each motion of the particles
is confirmed.

2. Numerical methods

2.1. Phase-field method

Grain growth behavior with advection flux was
described by Wang [18], based on the Cahn–Allen equa-
tions [21]:
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where Sk is the phase-field variable, t is the time, L is the
constant characterizing grain boundary mobility, G is the

total free energy and J
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s is the advection flux. The subscrip-
tion k of Sk denotes the different crystallographic orienta-
tions of grains (k = 1, 2, ..., p). Sk is equal to 1 or �1
inside the grain and 0 outside it, with orientation k, and
is taken to have intermediate values at the grain bound-
aries. For the conservation of mass, a relative density field
is also treated based on the Cahn–Hilliard diffusion equa-
tion [22]:
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where q is the relative density, B is the constant character-
izing surface mobility and J
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r is the advection flux. The to-
tal free energy G is assumed to be expressed as
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where G0 is the local free energy density (Appendix A), a
and b are gradient coefficients and a1–a5 are constants
[17]. The calculation of Eqs. (1) and (2) is implemented
by using the two-dimensional (2-D) finite difference meth-
od (FDM).

2.2. Discrete-element method

For the calculation of DEM, a model proposed by Parh-
ami and McMeeking [6] is employed, but a 2-D version is
used to meet the 2-D phase-field simulation. The transfer
and the rotation of each particle are given by

ff g ¼ ½C�fvg þ ffsg ð5Þ
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The components of {f} are the conjugate forces and the
moments at the nodes of each element, where fn and ft

are the normal and the tangential forces, respectively, M
is the moment and superscript 1 or 2 is to make the distinc-
tion between adjoining particles. {v} contains the velocities
and the rotational rate of the nodes corresponding to the
forces and the moments, where vn, vt are the normal and
the tangential velocities, respectively, and _h is the rota-
tional rate. {fs} is the sintering force vector, which pro-
duces the rigid motion of particles, where f 1

s and
f 2

s ð¼ �f 1
s Þ are the normal forces acting between particle

1 and 2. Matrix [C], correlating {f} with {v}, is formulated
as follows:
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where l is the center-to-center distance of the particles and
a, b, c are parameters derived by a classical sintering model
for grain boundary diffusion as follows:

a ¼ 2X 3

3Dgb
; b ¼ 2Xg; c ¼ 2X 5

45Dgb
ð10Þ
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