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Abstract

Space-filling polyhedral networks are commonly studied in biological, physical, and mathematical disciplines. The constraints gov-
erning the construction of each network varies considerably under each context, affecting the topological properties of the constituents.
A method for mapping the topological symmetry of a space-filling population of polyhedra is presented, relative to all possible polyhe-
dra. This method is applied to the topological comparison of populations generated by seven different processes: (i) natural grain growth
in polycrystalline metal, ideal grain growth simulated by (ii) interface-tracking and (iii) phase-field methods, (iv) Poisson–Voronoi and
(v) ellipsoid tessellations, and (vi) graph-theoretic and (vii) Monte Carlo enumerations of individual polyhedra. Evidence for topological
bias in these populations is discussed.
� 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

In polycrystalline metals, physical properties such as
tensile strength, ductility and creep resistance depend
strongly on microstructure: the nature and proportions of
constituent elements or phases on microscopic length
scales. Metrical properties, especially grain radii, have long
been studied; through stereology, simple measurements are
used to accurately estimate physical behavior. Topological
properties and their influence on physical properties is less
completely understood, although topology features promi-
nently in the kinetics of grain boundary motion in two and
three dimensions [1–3].

In 1887, Lord Kelvin conjectured that, to fill 3-D space
with identical cells, the minimum interfacial area would be

achieved using the 14-faced cell, or tetrakaidecahedron,
with six flat, square faces and eight hexagonal faces,
slightly curved to accommodate Plateau’s laws. In 1919,
Desch [4] conducted the first survey of grain topologies in
a polycrystalline metal. Instead of four- and six-edged
faces, Desch found more pentagons than any other shape
among the faces of 1000 brass grains. Weaire and Phelan
[5] found a more efficient partitioning by reinterpreting
Kelvin’s constraint to allow a unit cell comprising eight
polyhedra: six pentagonal dodecahedra (12 faces with five
edges each) and two tetrakaidecahedra (14 faces: two with
six edges and 12 with five edges each), wherein the pentag-
onal faces are slightly curved and the hexagonal faces are
flat. In studies of soapy froths, metal grains and simulated
polycrystals undergoing self-similar or “normal” grain
growth, numerous authors have found similar frequency
distributions of the number of edges per face [6–9]; each
of these distributions has an average close to five edges.
Kelvin’s tetrakaidecahedron and the Weaire–Phelan cell
are rarely observed. Glicksman [10] found the ideal
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solution for Kelvin’s conjecture using abstract “average
N-hedra” (ANH) with identical faces, edges and vertices.
Glicksman found the critical ANH, defined as that having
zero Gaussian curvature in its faces, to have approximately
13:397 faces with 5.1 edges each; it cannot be constructed.
This result can be interpreted as the extension ad infinitum
of the Weaire–Phelan unit cell, taking the ensemble average
of every face in a network of polyhedra [11].

Studying collapsing polycrystal grains, Steele [12] gener-
ated the Schlegel diagram [13] of almost every unique poly-
hedron with eight or fewer faces and mapped topologically
valid transitions among them. This effort to enumerate the
polyhedra in a metallurgical context was useful in identify-
ing the available pathways to the tetrahedron, which must
vanish due to its highly curved faces. The problem of enu-
merating all of the polyhedra is also of interest in mathe-
matical circles, principally in analyzing the difficulty of
doing so. In particular, the total number of unique convex
polyhedra up to 15 faces have been determined by Federico
[14], Duijvestijn [15] and Engel [16]. Partial graphical enu-
meration and calculation of the total number of unique 16-
hedra was done by Voytekhovsky and Stepenshchikov [17].
Of the most direct relevance, Brinkmann and McKay [18]
described an algorithm to enumerate the graphs of unique
convex polyhedra for an arbitrary number of faces; they
released its implementation as the open-source plantri

software package. The total numbers of unique polyhedra
with 4 6 f 6 20 faces are summarized as the third column
in Table 1. On our 3.3 GHz workstation, plantri enu-
merated each of the 57.9 billion unique icosahedra in 65 h.

Substantial efforts have been undertaken to systematically
identify the topologies of grains present in polycrystals. To
specify the topology of a given polyhedron, more informa-
tion is needed than the number of edges belonging to each
face. For example, the six tetragonal and eight hexagonal
faces of Kelvin’s tetrakaidecahedron can be rearranged to

produce two more topologically distinct polyhedra. Rhines
and Patterson [19] sketched Schlegel diagrams from stereo-
scopic observations of 500 aluminum grains after liquid gal-
lium embrittlement and separation; these were used to
analyze the frequency distribution of the numbers of faces
per grain and edges per face. Recently, Patterson et al. [20]
extended this work by analyzing the topology of each grain
in Monte Carlo grain growth simulations and summarizing
the frequency of observation associated with each Schlegel
diagram for the unique convex polyhedra with 4 6 f 6 8
faces. Patterson et al. enumerated a number of non-convex
Schlegel diagrams, but one solitary grain with such a config-
uration was observed in all their datasets. In recent work,
Lazar et al. [21] described a systematic approach to recording
the topology of every grain in a polycrystalline dataset using
Weinberg vectors [22] – that is, strings of letters or numbers
encoding the connectivity of each vertex (or “corner”) of the
grain. The original grain topology can be reconstructed from
this encoding, a significant improvement over the p-vector
approach of Barnette [23] used previously [24]. Mason
et al. [25] applied the fundamental concept of Weinberg vec-
tors to vertices in networks of polyhedra in situ: rather than
encoding the topology of a specific grain, Mason encodes the
topology of every vertex in a “swatch” within a specific num-
ber of edges from a chosen root. The distribution of swatches
generated from a microstructure can then be used to com-
pute its topological distance from a reference microstructure,
and to evaluate similarity in the topological makeup of differ-
ent microstructures.

In this paper, we present our methodology for compar-
ing the subset of grain topologies present in a microstruc-
ture to the domain of unique polyhedra. We apply this
method to microstructures generated by various processes
and discuss the differences in topologies expressed in each
population. The processes and populations of interest are
listed below on a subjective scale of “realism,” from the

Table 1
Summary of enumeration progress for polyhedra with f faces using plantri and our Monte Carlo algorithm (partially enumerated classes are indicated
in bold).

f v Total simple graphs Enumerated simple graphs Enumerated graphs with band-faces

4 4 1 1 0
5 6 1 1 0
6 8 2 2 1
7 10 5 5 3
8 12 14 14 15
9 14 50 50 64

10 16 233 233 352

11 18 1249 1249 2096

12 20 7595 7595 14,011

13 22 49,566 49,565 98,119

14 24 339,722 327,848 376,266

15 26 2,406,841 605,124 426,414

16 28 17,490,241 413,265 219,886

17 30 129,664,753 113,213 53,713

18 32 977,526,957 81,311 19,241

19 34 7,475,907,149 67,029 7118

20 36 57,896,349,553 369 732
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