

Available online at www.sciencedirect.com

SciVerse ScienceDirect

Acta Materialia 61 (2013) 3186-3199

www.elsevier.com/locate/actamat

Hydrogen diffusion and trapping in a precipitation-hardened nickel-copper-aluminum alloy Monel K-500 (UNS N05500)

Jia-He Ai, Hung M. Ha, Richard P. Gangloff, John R. Scully *

Center for Electrochemical Science and Engineering, Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904, USA

Received 10 July 2012; received in revised form 26 January 2013; accepted 3 February 2013

Available online 13 March 2013

Abstract

Hydrogen uptake, diffusivity and trap binding energy were determined for the nickel–copper–aluminum alloy Monel K-500 (UNS N05500) in several conditions. The total atomic hydrogen (H) concentration increased from 0 to 132 wppm as the hydrogen overpotential decreased to -0.5 V in alkaline 3.5% NaCl electrolyte at 23 °C. The room-temperature H diffusion coefficient ranged from 0.9 to 3.9×10^{-14} m² s⁻¹ for single-phase solid solution, aged, and cold worked then aged microstructures. Diffusivity was independent of lattice H concentration but depended weakly on metallurgical condition, with slower H diffusion after aging. The apparent activation energy for H diffusion was in the range of $29-41 \pm 1.5$ kJ mol⁻¹ at the 95% confidence level. The lower value approached nearly perfect lattice transport, while the high value was strongly influenced by traps of low-to-intermediate strength. Atomic hydrogen trapping at metallurgical sites, strongly suggested to be spherical-coherent γ' (Ni₃Al) precipitates, was evident in the aged compared to the solution heat treated + water-quenched condition. Both thermal desorption and classical Oriani trap state analyses confirmed that the apparent hydrogen trap binding energy interpreted as Ni₃Al (10.2 ± 4.6 kJ mol⁻¹) interfaces was significantly less than the activation energy for perfect lattice diffusion (25.6 ± 0.5 kJ mol⁻¹) in this nickel-based alloy system.

Keywords: Age hardening; Nickel alloy; Hydrogen diffusion and trapping; Hydrogen embrittlement; Hydrogen desorption

1. Introduction

Monel K-500 alloy (UNS N05500) is a precipitation-hardenable nickel–copper (64% Ni–30% Cu–3% Al, wt.%) alloy strengthened by a combination of cold work and age hardening to form fine coherent precipitates [1]. The aged alloy contains spherical, coherent Ni₃(Al,X) and Ni,Fe₃(Al,Fe) phases, with the former known as γ' , where X = Cu, Mn, Ti or Si, present in an Ni–Cu face-centered cubic (fcc) solid solution [2]. The misfit strain is small, which accounts for the spherical shape [3]. Notably, these homogeneously nucleated and uniformly distributed precipitates are absent in alloys solution heat treated (SHT) above 750 °C when thin and rapidly water-quenched

(WQ) [2]. This differs from other Ni–Al and Ni–Ti alloys, where γ' forms readily on quenching [4]. The precipitates can form 6–7% by volume upon aging at 700 °C or less, and remain spherical and coherent during coarsening [2]. Incoherent TiC phases are present in SHT + WQ alloys, but exhibit little shape or size change with aging [2]. $M_{23}C_6$ carbides, where M=Mn, Fe or Ni, form on isolated grain boundaries in Monel K-500 aged for long times. Lastly, annealing twins are prevalent in SHT + WQ, aircooled or aged material; however, their interface energy is believed to be only a small percentage of the grain boundary energy [2,5]. These metallurgical features are pertinent to H uptake, diffusion and trapping.

Monel K-500 was believed to be relatively immune to hydrogen environment assisted cracking (HEAC) and stress corrosion cracking (SCC) in various natural environments [6]. SCC in H_2S environments under high-stress,

^{*} Corresponding author.

E-mail address: jrs8d@virginia.edu (J.R. Scully).

high-pressure and high-temperature steam, in HF vapors and in Hg was noted for Monel 400 and aged Monel K-500 [7]. Reports also began to indicate susceptibility to room-temperature hydrogen environment embrittlement [8–10], observed as reductions in tensile ductility and notch strength ratio upon cathodic charging. Embrittlement of SHT + aged Monel K-500 (Rockwell C 25-35) occurred in seawater at room temperature when coupled to zinc and where dissolved hydrogen levels increased during prolonged exposure (8 weeks) to 50 wppm. A dynamic plastic strain rate effect was also observed even for pre-charged material [9,11]. Bolt failures have been also observed in age-hardened Monel K-500 subjected to cathodic polarization. Failures by intergranular cracking were attributed to hydrogen embrittlement as a result of cathodic polarization, such as when coupled to aluminum anodes in seawater [7,11]. This was first attributed to high thread root hardness (~HRC 39) due to age hardening after thread machining. Annealing then age hardening was recommended after threading to maintain hardness below a proposed limit (HRC 35) for Monel K-500 in sour systems. However, additional failures have occurred in roll-threaded Monel K-500 bolts annealed at 980-1050 °C, WQ and precipitation-hardened at 500-600 °C for 16 h, producing a Rockwell C hardness of only 25 [11]. This level is below one limit recommended by a US Federal Specification for aged round products [12]. Embrittlement failures also occurred in bolts after about 1 year under a load of about 60% of the tensile yield strength and cathodically protected with anode grade aluminum, even after issuance of modified specifications [7,11]. Intergranular cracking occurred under slow strain rate testing in air after H pre-charging when coupled to Al, or when charged potentiostatically (annealed and SHT + aged Monel K-500), and to a lesser extent when coupled to steel or potentiostatically polarized to -800 mV vs. Ag/AgCl (STA + aged) in ASTM artificial ocean water [13].

The HEAC behavior of Ni-based superalloys stressed in gaseous H2 and various aqueous exposures has been reviewed in detail elsewhere [14]. The severity of this cracking problem is apparent in many Ni-based alloys, such as Alloy 718 [14]. However, few studies have documented the threshold stress intensity (K_{th}) for HEAC of Monel K-500 and there are no reports on crack growth rate data for controlled testing. In limited work, K_{th} for aged Monel K-500 (R_C 30) decreased from above 70 MPa \sqrt{m} at $-0.7 \, \mathrm{V_{SCE}}$ to less than 18 MPa $\sqrt{\mathrm{m}}$ when stressed in room-temperature NaCl solution at -1.0 V_{SCE}. Crack growth rates were not reported [15]. Moreover, little is known about hydrogen uptake, transport and trapping behavior in this alloy that would contribute to a quantitative understanding and micromechanical model prediction of HEAC [14]. The effective hydrogen diffusion coefficient in pure, single-crystal Ni was reported to be 8.4×10^{-10} cm² s⁻¹ at 23 °C, with an activation energy of 39.5 kJ mol⁻¹ [16]. Computation using transition state theory indicated that the activation energy reached 45.7 kJ mol⁻¹ for a perfect Ni lattice [16]. An Ni-30 at.% Cu alloy had a hydrogen diffusivity of 3×10^{-10} cm² s⁻¹ at 23 °C and an activation energy of ~41 kJ mol⁻¹ [13]. The effective diffusion coefficient, D_{eff} , which may be H-trap sensitive, was reported to be 5.6×10^{-11} cm² s⁻¹ at 23 °C [17] for SHT (950 °C well above the γ' solvus) and radiatively cooled for Monel K-500. The hardness was not reported, and the degree of aging upon cooling was uncertain. Aged alloy X-750 (Ni-Cr-Fe-Al-Ti) shows a drop in effective hydrogen diffusivity of a factor of \sim 9 from pure Ni, which is attributed to composition differences and H trapping at (Ti,Nb)C particles. An additional decrease by a factor of five in effective diffusivity was attributed to precipitation of γ' Ni₃(Al,Ti) [18]. These results substantiate the importance of H trapping in Ni-based alloys and demonstrate that trapping depends on composition and microstructure.

H-metal-microstructure interactions likely between Monel K-500 and high-strength steels because the activation energy for perfect lattice diffusion is low in high-strength steel (i.e. 7 kJ mol⁻¹), while trap binding energies can be as high as 65 kJ mol⁻¹ [19]. In contrast, Ni-based fcc lattices have high activation energies. Moreover, possible trapping sites will differ for precipitationhardened fcc Ni-based alloys compared to ferrous martensitic microstructures. Hydrogen-assisted cracking susceptibility is controlled by crack tip diffusible hydrogen concentration, which is controlled by the hydrogen overpotential and production rate [20]. Metallurgical trap states are important and serve as benign sinks for hydrogen, function as crack tip damage initiation sites and the crack propagation path itself, or function as a reservoir of hydrogen that can be supplied to the tensile triaxial stress field of the stationary or moving crack tip [17,21–23]. Additionally, stage II environmental crack velocities, $[da/dt]_{II}$, at the upper bounds of hydrogen uptake rates, where cracking is not surface uptake limited, are often controlled by the $D_{\rm eff}$ in the zone of material at the crack tip [23]. These parameters likely differ between SHT, cold-worked and aged Monel K-500. The diffusible hydrogen concentration, $C_{\rm H.diff}$, absorbed in the Ni-based alloy as a function of cathodic potential, and $D_{\rm eff}$ for H are critical for understanding and modeling $[da/dt]_{II}$ and K_{th} for Monel K-500. However, $C_{H,diff}$ behavior has not been established as a function of hydrogen overpotential or cathodic hydrogen production rate for Monel K-500. Moreover, D_{eff} and trapping behavior have not been elucidated over a range of technologically significant microstructural conditions, which include cold work and aging time/temperature.

The objective was to characterize $C_{\rm H,diff}$, $D_{\rm eff}$, and microstructural H trapping behavior in Monel K-500 by comparing SHT/WQ, SHT + artificially aged, SHT + cold worked, as well as SHT + cold-worked + aged variants of this alloy. Experimental data were acquired by the thermal desorption spectroscopy (TDS) method enabled by temperature programmed desorption, as well as by electrochemical hydrogen desorption methods.

Download English Version:

https://daneshyari.com/en/article/1446379

Download Persian Version:

https://daneshyari.com/article/1446379

<u>Daneshyari.com</u>