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a b s t r a c t

In this paper the acceleration motion of a vertically falling spherical particle in incompressible Newtonian
media is investigated. The velocity is evaluated by using homotopy perturbation method (HPM) and Padé
approximant which is an analytical solution technique. The current results are then compared with those
derived from HPM and the established fourth order Runge–Kutta method in order to verify the accuracy
of the proposed method. It is found that this method can achieve more suitable results in comparison to
HPM.
Crown Copyright � 2011 The Society of Powder Technology Japan. Published by Elsevier B.V. All rights

reserved.

1. Introduction

Non-linear phenomena play a crucial role in applied mathemat-
ics and physics. We know that most of engineering problems are
non-linear, and it is difficult to solve them analytically. Various
powerful mathematical methods have been proposed for obtaining
exact and approximate analytic solutions.

Recently, He [1,2] proposed the homotopy perturbation method
(HPM) and variational iteration method (VIM) for solving linear,
non-linear, initial, and boundary value problems. It is worth men-
tioning that the origin of variational iteration method can be traced
back to Inokuti et al. [3], but the real potential of this technique
was explored by He. Moreover, some researchers realized the
physical significance of HPM and VIM, its compatibility with the
physical problems and applied this promising technique to a wide
class of linear and non-linear, ordinary, partial differential equa-
tions [4–11].

The problem of describing the accelerated motion of a falling
sphere in Newtonian fluids is relevant to many situations of prac-
tical interest. Typical examples include unit operations, such as
classification, centrifugal and gravity collection and separation,
where it is often important to know the detailed trajectories of
the accelerating particles for purposes of design or improved oper-
ation. In other practical situations, for example raindrop terminal
velocity measurements, or viscosity measurements in Newtonian

fluids using the falling ball method, it is also necessary to know
the time and distance required to reach terminal velocity for a gi-
ven sphere-fluid combination prior to making the reliable determi-
nation of the sphere settling velocity. Owing to the importance of
the aforementioned applications, considerable attention has been
devoted to the study of the accelerated motion of a sphere in a
fluid, and an excellent account of the theoretical developments in
this area has been given by Clift et al. [12] for Newtonian fluids. Re-
cently, analytical methods [13–17] have been used to describe the
transient motion of the falling sphere and non-sphere in Newto-
nian fluids. Jalaal and Ganji [13] studied the unsteady motion of
a spherical particle rolling down an inclined plane submerged in
a Newtonian environment using a drag of the form given by
Chhabra and Ferreira [18], for wide range of Reynolds numbers
by HPM. Jalaal et al. [14] applied VIM on the acceleration motion
of a non-spherical particle in an incompressible Newtonian
environment for a wide range of Reynolds numbers using a drag
coefficient as defined by Chien [19]. In [4,15] the unsteady motion
of a spherical particle falling in a Newtonian fluid was analyzed
using HPM. Jalaal et al. [16] analyzed the motion of a spherical
particle in a plane couette flow. Jalaal et al. [17] applied homotopy
analysis method (HAM) to obtain exact analytical solutions for
unsteady motion of a spherical particle rolling down an inclined
tube submerged in an incompressible Newtonian environment.

To obtain precise velocity of a falling particle, an accurate rela-
tionship between Reynolds numbers and drag coefficient is re-
quired. In this work, we study the accelerated motion of a falling
spherical particle with a general drag coefficient of form given by
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CD ¼ aþ b
Re

: ð1Þ

For specific values of a and b, this equation is valid in a wide range
of Reynolds numbers, 0 6 Re 6 105. The analysis derived by the
homotopy perturbation method (HPM) and Padé approximant.
The solutions are compared with those derived by HPM [4] and
the well-known fourth order Runge–Kutta method in order to verify
the accuracy of the proposed method.

2. Problem statement

Consider a small, rigid, spherical, particle of diameter D, mass m
and density qs falling in an infinite extent of an incompressible
Newtonian fluid of density q and viscosity l. Let u represent the
velocity of the particle at any instant time, t, and g the acceleration
due to gravity. The unsteady motion of the particle in a fluid can be
described by the Basset–Boussinesq–Ossen (BBO) equation. For a
dense particle falling in light fluids and by assuming q� qs, Basset
History force is negligible. Thus, the equation of particle motion is
given as

m
du
dt
¼ mg 1� q

qs

� �
� 1

8
pD2qCDu2 � 1

12
pD3q

du
dt
; ð2Þ

where CD is the drag coefficient. In the right hand side of Eq. (2), the
first term represents the weight and buoyancy effects, the second
term corresponds to drag resistance, and the last term is due to
the added (virtual) mass effect which is due to acceleration of fluid
around the particle.

The non-linear terms due to non-linearity nature of the drag
coefficient, CD is the main difficulty in solution of Eq. (2). Substitut-
ing Eq. (1) in Eq. (2) and by rearranging parameters, Eq. (2) could
be rewritten as follow:

a
du
dt
þ buþ cu2 � d ¼ 0; uð0Þ ¼ 0; ð3Þ

where

a ¼ mþ 1
12

pD3q
� �

; ð4aÞ

b ¼ b
8
pDl; ð4bÞ

c ¼ a
8
pD2q; ð4cÞ

d ¼ mg 1� q
qs

� �
: ð4dÞ

3. Padé approximants

A Padé approximant is the ratio of two polynomials constructed
from the coefficients of the Taylor series expansion of a function
uðxÞ. The ½L=M� Padé approximants to a function yðxÞ are given by
[20]:

L
M

� �
¼ PLðxÞ

Q MðxÞ
; ð5Þ

where PLðxÞ is polynomial of degree at most L and QMðxÞ is a poly-
nomial of degree at most M. The formal power series

yðxÞ ¼
X1
i¼1

aixi; ð6Þ

yðxÞ � PLðxÞ
Q MðxÞ

¼ OðxLþMþ1Þ; ð7Þ

determine the coefficients of PLðxÞ and QMðxÞ by the equation. Since
we can clearly multiply the numerator and denominator by a con-
stant and leave ½L=M� unchanged, we imposed the normalization
condition

QMð0Þ ¼ 1:0: ð8Þ

Finally, we require that PLðxÞ and QMðxÞ have non-common factors.
If we write the coefficient of PLðxÞ and QMðxÞ as

PLðxÞ ¼ p0 þ p1xþ p2x2 þ � � � þ pLxL; ð9aÞ
QMðxÞ ¼ q0 þ q1xþ q2x2 þ � � � þ qMxM; ð9bÞ

then by (10), we may multiply (7) by QMðxÞ, which linearizes the
coefficient equations. We can write out (9) in more details as

aLþ1 þ aLq1 þ � � � þ aL�Mþ1qM ¼ 0;
aLþ2 þ aLþ1q1 þ � � � þ aL�Mþ2qM ¼ 0;

..

.

aLþM þ aLþM�1q1 þ � � � þ aLqM ¼ 0;

ð10aÞ

a0 ¼ p0;

a0 þ a0q1 ¼ p1;

..

.

aL þ aL�1q1 þ � � � þ a0qL ¼ pL:

ð10bÞ

To solve these equations, we start with (10a), which is a set of linear
equations for all the unknown q0. Once the q0 are known, then (10b)
gives and explicit formula for the unknown p0, which complete the
solution. If (10a) and (10b) are nonsingular, then we can solve them
directly and obtain (11), where (11) holds, and if the lower index on
a sum exceeds the upper, the sum is replaced by zero:

L
M

� �
¼

det

aL�Mþ1 aL�Mþ2 � � � aLþ1

..

. ..
. . .

. ..
.

aL aLþ1 � � � aLþMPL
j¼Maj�Mxj PL

j¼M�1aj�Mþ1xj � � �
PL

j¼0ajxj

2
66664

3
77775

det

aL�Mþ1 aL�Mþ2 � � � aLþ1

..

. ..
. . .

. ..
.

aL aLþ1 � � � aLþM

xM xM�1 � � � 1

2
66664

3
77775

: ð11Þ

Nomenclature

a; b; c; d constants
CD drag coefficient
D particle diameter (m)
g acceleration due to gravity (m/s2)
m particle mass (kg)
Re Reynolds number
t time (s)
u velocity (m/s)

Greek symbols
a; b constants
l dynamic viscosity (kg/m s)
q fluid density (kg/m3)
qs spherical particle density (kg/m3)
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