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Abstract

In the present work, a growing particle subjected to anisotropic effect, if not influenced by other particles, is assumed to be an
isotropically growing particle with constant volume. Accordingly, how to describe the anisotropic growth just becomes how to solve
the blocking effect arising from the anisotropic growth. Following the statistical description of Johnson–Mehl–Avrami–Kolmogorov
kinetics, the blocking effect was investigated further. Consequently, a series of analytical models for solid-state transformation,
where a particle undergoes 1-scale blocking, k-scale blocking and infinite-scale blocking, were developed. On this basis, it was analytically
proved for the first time that the classical phenomenological equation accounting for the anisotropic effect (f ¼ 1� ½1þ ðn� 1Þxe��1=n�1)
corresponds to an extreme case where a particle encounters infinite-scale blocking. From the model analysis, the anisotropic effect on the
transformation depends on two factors: the non-blocking factor c and the blocking scale k. From the model calculations, the Avrami
exponent, subjected to the anisotropic effect, changes as a function of the transformed fraction, whereas the effective activation energy
is not affected by the anisotropic effect. The present models were adopted to describe isothermal crystallization of amorphous Fe33Zr67

ribbons; good agreement with the published results was achieved.
� 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

In studies of phase transformations involving nucleation
and growth, the classical Johnson–Mehl–Avrami–Kol-
mogorov (JMAK) equation [1–5] often plays an important
role. This equation provides an expression for the fraction
of material transformed as a function of time f(t) in terms
of the nucleation and growth rates. It is known that the
JMAK formula is exact, provided the conditions imposed
in the original derivations are not violated, such as: isother-
mal transformation, either pure site saturation at time t = 0
or pure continuous nucleation; high driving force (large
undercooling or superheating); and randomly dispersed
nuclei which grow isotropically [6–11]. In these cases, the
kinetic parameters, the Avrami exponent n, the effective

activation energy Q and the pre-exponential factor K0 all
hold constant with respect to time and temperature.

Recently, a modular model for transformation kinetics
[8–16] was proposed which includes, but is not restricted
to, the classical JMAK description [11,12]. The model rec-
ognizes three mechanisms, i.e. nucleation, growth and
impingement of growing new-phase particles, and is
applicable to both isothermal and non-isothermal transfor-
mations. By choosing suitable nucleation and growth
mechanisms, in particular a mixture of nucleation modes
(e.g. the mixture of pre-existing nuclei and continuous
nucleation), the model even leads to analytical formula-
tions for the degree of transformation which exhibit the
framework of the JMAK equation but with time-depen-
dent kinetic parameters n(t), Q(t), K0(t) (isothermal trans-
formation) or temperature-dependent kinetic parameters
n(T), Q(T), K0(T) (isochronal transformation) [13–15]. This
implies that a transformation can still be considered
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“iso-kinetic” in the sense that the prevailing transformation
mechanism does not change throughout the transforma-
tion process, in spite of the change in n and Q with trans-
formation. In this modular model, the effects due to
anisotropic growth and non-random nuclei distribution
have also been considered as two contrary modes for
impingement [11,12], which merely modify the relation
between the transformed fraction f and the extended
fraction xe, applying the phenomenological factors for
impingement. However, the calculation of xe still follows
the essential JMAK-like restrictions, e.g. randomly dis-
persed nuclei and isotropic growth.

Under practical conditions, unfortunately, the JMAK-
like restrictions are often violated. For example, the tran-
sient nucleation [17,18], the spatially correlated nucleation
[19,20], the necessarily associated size-dependent growth
[21,22] or the non-parallel anisotropic growth with block-
ing up to all relevant orders [23,24] all lead to deviations
from the JMAK-like kinetics. On this basis, some exten-
sions based on JMAK-like theory have been made, espe-
cially in the cases subjected to the anisotropic effect.

Calculation of transformation kinetics involving aniso-
tropic particles is a much more challenging problem than
that for isotropic particles. Up to now, two approaches
have been proposed to deal with the anisotropic effect.
One approach is the phenomenological extension of
JMAK-like formulation by adding (one or more) new vari-
ables which provide freedom to improve the agreement
where anisotropic growth occurs [11,12,25–27]; this
approach changes only the relation between f and xe, but
does not change xe itself (e.g. the modular model mentioned
above, or see Section 2.2). The other approach is, according
to the physical essence of anisotropic effect, devoted to
deriving an analytical description with physically realistic
variables (e.g. the growth rate anisotropy gr and the orien-
tation /) [28–34]; this approach does reduce xe.

Furthermore, computer modeling and simulations have
also been used to analyze the anisotropic effect. Shepilov
and co-workers performed computer simulations to inves-
tigate the growth of randomly distributed and oriented
ellipsoidal particles in two-dimensional (2D) [35] and
three-dimensional (3D) [23] spaces, where the mutual
blocking of growing particles in the first and the second
order was studied. In the first-order treatment, the possibil-
ity that a third particle hinders the blocker in blocking the
aggressor (second-order blocking) was not accounted for.
Subsequently, with the Monte Carlo method, Pusztai and
Gránásy [24] and Kooi [36,37] also studied the mutual
blocking of anisotropically growing particles up to all rele-
vant orders, and Kooi proposed an analytical model to
describe the blocking effect. On the basis of Kooi’s model,
the deviations from JMAK-like kinetics due to the aniso-
tropic effect were investigated further by Liu and Yang [38].

Actually, a proper analytical treatment in the spirit of
JMAK-like theory has not yet been developed to describe
such transformation. In the present work, a statistical anal-
ysis for the blocking effect arising from the anisotropic

growth is performed. Analytical models for solid-state
transformation, where the particle undergoes 1-scale block-
ing, k-scale blocking and infinite-scale blocking, are devel-
oped. In Section 2, a theoretical background essential for
the current models is summarized. In Section 3, a philo-
sophical description of the statistical analysis and a deriva-
tion of the current models are presented. In Section 4, first,
new expressions for the Avrami exponent nnew and effective
activation energy Qnew subjected to the anisotropic effect
are obtained and discussed; then the present model calcula-
tion, which illustrates the contributions of non-blocking
factor c and blocking scale k (see Sections 3 and 4) to the
anisotropic effect, is discussed; and finally, the model fit
to crystallization of amorphous Fe33Zr67 ribbons at
663 K is performed. Several brief concluding remarks are
summarized in Section 5.

2. Theoretical background

2.1. JMAK kinetics

In the JMAK description, nucleation and the growth
are modeled as two statistical processes. The original der-
ivation of the JMAK equation rests on calculating the
probability that a randomly chosen point in space (e.g.
the origin point O) will have remained untransformed by
a given time t. The probability that a particle nucleated
at time s will grow to the origin point O at time t is
expressed as [5]

I ¼ _NðsÞdsY ðs; tÞ ð1Þ
where _N is the steady-state nucleation rate per unit volume,
_NðsÞds is the probability for a particle nucleated in the time

interval [s, s + ds] per unit volume, and Y(s, t) is the vol-
ume of a particle at time t when it was nucleated at time
s. Accordingly, q(t), the probability of the random point
O untransformed at time t, can be obtained, from Eq.
(1), as [5,23]

qðtÞ ¼ exp �
Z t

0

_NðsÞY ðs; tÞds

� �
ð2Þ

And thus, the JMAK equation describing the temporal
evolution of transformed fraction follows

f ðtÞ ¼ 1� exp½�xeðtÞ� ð3Þ
where the extended fraction xe obeys

xe ¼
Z t

0

_NðsÞY ðs; tÞds ð4Þ

As such, the probability that a particle nucleated at
time s will transform the origin point O at time t
corresponds to the differential form of xe (i.e. dxe). For
the sake of generalization, dxe, defined herein as a compre-
hensive probability factor, i.e. the increment of xe incorpo-
rating all the prevalent modes of nucleation and growth,
will be used to derive the current models (see Sections 2.3
and 3).
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