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Abstract

In a recent publication an analytical solution of the Fokker–Planck continuity equation for the grain size distribution for two-dimen-
sional grain growth in the long time limit (self-similar state) was provided. It used von Neumann–Mullins law and the results of Rios and
Glicksman, but was based on a stochastic formulation first proposed by Pande. In this paper this analytical solution is compared with
experimental and computer simulation distributions. It is found that grain size distribution, as obtained by simulations of two-dimen-
sional grain growth, although in agreement with our analytical results, may in fact differ from experimentally obtained grain size distri-
butions in thin films. It is also shown mathematically that in the two limiting cases the general solution is reduced to the Hillert or
Rayleigh distributions.
Published by Elsevier Ltd. on behalf of Acta Materialia Inc.
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1. Introduction

Grain growth is a well-known phenomenon in the evo-
lution of crystalline microstructures, resulting in an
increase in average grain size with time. This happens by
the motion of grain boundaries and the gradual disappear-
ance of the smallest grains during annealing treatment.
Grain growth under the usual circumstances is known to
approach a quasi-stationary (self-similar) distribution of
grain sizes after a transient period. For a review of this
see Atkinson [1]. In a recent publication [2] a size-based
continuum stochastic formulation was presented based on
topological considerations. As expected, that analysis led
to a Fokker–Planck equation for the size distribution,
which can yield a unique self-similar asymptotic state that
could be reached from any arbitrary initial state. The Fok-
ker–Planck equation was obtained using a stochastic for-
mulation first proposed by Pande [3] and employing von
Neumann–Mullins law and the results of Rios and

Glicksman [4]. We also showed that the boundary condi-
tions are sufficient to determine the “strength” of the diffu-
sion term D in terms of the parameters already determined
by Rios and Glicksman [4]. The approximate analytical
solution of the Fokker–Planck equation presented in
Pande and Cooper [2] was limited to two dimensions and
was based on the assumption of quasi-stationary distribu-
tions reached in the long time limit. This is so-called nor-
mal grain growth, when only the scale varies with some
power of time, the grain size distribution remaining self-
similar. The mathematical expression for grain size distri-
bution thus obtained has, in principle, no adjustable
parameters.

In this paper the analytical solution is compared with
experimental and simulated distributions. The grain size
distributions obtained by computer simulation agree well
with our analytically obtained distribution. However, in
some cases there appears to be a discrepancy between our
approximate analytical results and the experimental results.
The reasons for this discrepancy are discussed. In addition,
the approximate analytical solution is further considered to
show mathematically that in the two limiting cases for one
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of the constants the general solution is reduced to a Hillert
or a Rayleigh distribution [1,2] (see Appendix A).

2. Analytical formulation

For the sake of completeness a brief summary of the
analytical formulation is given below. For full details see
Pande and Cooper [2].

von Neumann [5] and Mullins [6] showed that the
growth rate of an individual grain, dC/dt, growing under
the influence of its curvature-driven motion, is given by
the expression

dC
dt
¼ Mðn� 6Þ; ð1Þ

where C is the area of an n-sided grain and M is a constant.
A relation between n and C is needed in order to obtain a
grain size distribution from this relation.

The first attempt to relate grain radius R or grain area C
and n was made by Hillert [7], who gave a comprehensive
and consistent theoretical treatment of grain growth in
both two and three dimensions. Using heuristics, he argued
that
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R
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where k is a constant and R is the mean of the grain size
distribution.

Eq. (2) leads to an equation for F(R, t) in the mean field
model:
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where A and B are constants. Surprisingly, predictions
from this equation are in serious disagreement with the
experimental results. In Pande and Cooper [2] we showed
why models based on a mean field approach cannot explain
many properties of grain growth observed experimentally,
no matter what form of growth rate is assumed. Hence,
there is a need for a new approach, namely a stochastic
treatment [3,8–11].

Mathematically, a stochastic process in its simplest form
is described by a function of two variables, one of which is
time, and involves both a deterministic term and a random
term. Specifically, in this treatment relation (2) is retained,
except that it is noted that it is a statistical relation and not
an exact one.

The stochastic continuity or Fokker–Planck equation in
this case is given by:
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where A, B and D are arbitrary constants yet to be deter-
mined. On comparison with the mean field continuity Eq.
(3) it is seen that it has an additional term, called the diffu-
sion term. The magnitude of the diffusion term could, how-
ever, be small. As a first approximation we took D to be
constant, independent of time and grain size.

The constant A is a material parameter that can be
determined as shown in Rios and Glicksman [4]. The other
two constants, B and D, can be determined exactly from
boundary conditions, as shown in Sections 3 and 4. So,
in principle, there are no adjustable constants in our model.

The continuity equation (Eq. (4)) can be recast as an
ordinary differential equation by imposing the experimen-
tal observation of self-similarity of the grain size distribu-
tion. We assume that all grain sizes are accessible and
that the total area (mass) of the polycrystalline system is
conserved and finite. Appropriate boundary conditions
for the size distribution F(R, t) may thus be written as:

F ð0; tÞ ¼ F ð1; tÞ ¼ 0: ð5Þ
The area (mass) conservation requirement can be expressed
in integral form as:Z 1

0

R2F ðR; tÞdR ¼ constant: ð6Þ

From the self-similarity condition of the grain size distribu-
tion, the spatial and temporal components of F(R, t) can be
separated [20] so that it can be expressed as:

F ðR; tÞ ¼ t�3=2f ðxÞ; ð7Þ
where x � R=�RðtÞ and f(x) is the grain size distribution for
the scaled variable x. Here �R is defined as the mean (first
moment) of the distribution, and it can be shown to vary
with time as [1]:

R ¼ 2kt1=2 ð8Þ
where k is a constant. The shape of the renormalized grain
size distribution is time invariant, but the scale factor �R
increases as the square root of annealing time.

Using Eqs. (7) and (8), Eq. (4) can be rewritten as:

D
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Let

e ¼ D=k2; ð10Þ
and

a ¼ B=k2; ð11Þ
and A/k2 can be shown to be equal to a + e [2].

Eq. (9) is then rescaled as:

e
d2f ðxÞ

dx2
þ aþ e

x
� aþ 2x

h i df ðxÞ
dx
þ 6� aþ e

x2

h i
f ðxÞ ¼ 0

ð12Þ
The solution to Eq. (12) must also satisfy the constraint

condition given by Eqs. (5) and (6). An approximate ana-
lytical solution of this equation was given in Pande and
Cooper [2]. Eq. (12) can be solved exactly for two limiting
cases where the driving force is either due only to diffusion
(Rayleigh) or to the drift velocity (Hillert).

In the first limiting case [11] the Rayleigh grain size dis-
tribution occurs when a = 0 and e – 0. This means that all
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