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Abstract

Clusters of atoms can be divided into three categories depending on their topology. One of the categories provides the basis for devel-
opment of a model of a perfectly random structure (ideal amorphous solid) using the non-equilateral triangle topology in the coordina-
tion shell. Metallic glasses solidify as amorphous solids with random arrangement of atoms. A model of Zr-based metallic glass has been
constructed and described in terms of cluster topology, and compared with a recently published dynamic molecular model of the same
alloy. It is shown that the pair distribution function for the ideal amorphous model relates to the pair correlation function obtained from
the dynamic model. Debye X-ray scattering computations reveal the presence of vacancies and other flaws relative to the ideal amor-
phous solid. A shift in the peak position can be predicted using the Erhenfest formula. Two atomic displacement mechanisms involving
a five-atom sub-cluster are identified as the fundamental means of compositional redistribution between clusters in the alloy.
� 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The understanding of the atomic-scale structure of sol-
ids (from which modern technology and society benefit so
greatly) has come about to a large degree because of the
development of the methods of geometry and X-ray crys-
tallography. From the first discovery of the diffraction of
X-rays by a crystal in 1912 [1] to the present day, when
structures of large protein molecules are determined rou-
tinely, crystallography has developed from small begin-
nings to become an enormously successful and powerful
tool. Of pivotal importance in this success is the fact that
the methods of crystallography are based on the concept
of an ideal (perfect) crystal in which unit cells or building
blocks of the material are stacked in perfectly repeating
rows and columns to form a periodic array of atoms or
molecules (of infinite extent). This same ideal is assumed
for the very simplest to the most complex of structures.

Although real crystals only ever approximate this ideal
(some not very closely), it is this ideal structure which is
always used as a permanent baseline relative to which real
crystalline materials are compared and can be understood.

In 1984 a new class of solid materials were discovered [2]
that possessed long-range orientational order but no trans-
lational symmetry. These so-called quasicrystals gave sharp
diffraction peaks like crystals but had symmetries incom-
patible with those found for normal crystals. As this field
has developed over the last 25 years, a model that has been
used extensively to understand the structure of these novel
materials is the Penrose tiling model [3]. This structure is
envisaged to be made up of two different types of building
blocks (tiles), which take the place of the single unit cell of
the ideal crystal model. Although real quasicrystals do not
conform exactly to the ideal Penrose model, it nevertheless
plays a role of prime importance in providing the same
kind of baseline relative to which real quasicrystals may
be understood.

For the third class of solid materials, namely amorphous
or glassy materials, the situation has not been so
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satisfactory and there is still much debate concerning the
exact nature of these materials. In a recent article, Sheng
et al. [4] say that “the atomic arrangements in amorphous
alloys remain mysterious at present”. A search of recently
published literature on atomic structure of metallic glassy
alloys will reveal that the main effort towards solving this
problem is directed towards atomistic molecular dynamics
simulations. Since glassy materials are non-equilibrium
structures, one should anticipate that the results of each
simulation, carried out in different laboratories, will be dif-
ferent; no asymptotically unique structure can be achieved.
In light of the above, one can conjecture that this is not the
right approach to define the ideal baseline model for the
structure of amorphous metals. Instead, a geometrical
model should be sought. Such a geometrical ideal amor-
phous solid (IAS) for mono-sized spheres has been
described in detail elsewhere [5], and we follow that
approach here to describe the ideal amorphous structure
of a Zr-based metallic glass. Coincidentally, a molecular
dynamics model of the very same Zr-based metallic glass
has been just published by Hui et al. [6], and this gives a
special opportunity for comparison and analysis of what
are at present the best atomistic dynamic model, with the
best theoretical baseline model for this material.

2. Geometric simulations

2.1. IAS model of [Zr41.2Ti13.8Cu12.5Ni10Be22.5] metallic

glass

According to the specific IAS rules [5], the construction
of random packing of spheres of m types is as follows:

Step 1: Begin by setting up m virtual bins, each bin con-
taining enough of each type of sphere.

Step 2: Place one sphere of any type at the origin
(x = y = z = 0).

Step 3: Place k spheres (normally �k) in contact with the
sphere at the centre, forming a cluster of random
configuration. It is essential to use the method of
division of the sphere’s surface into equal areas [7]
to avoid bias (see Fig. 1). Pick up spheres from
the bins with a frequency in proportion to the
required composition.

Step 4: Identify all three-adjacent-sphere sites formed on
the surface of the created cluster and sort the sites
in ascending order of distance from the origin.

Step 5: Add spheres of m type on identified sites corre-
sponding to the required composition and in
order from the closest to the furthermost from
the centre. Reject overlapping spheres.

Step 6: Repeat the previous two steps as many times as
required; in principle, the additions can be carried
out to infinity; in practice, the simulation ends
with a cell of finite dimensions.

The outcome of this computational process is a three-
dimensional geometrical pattern of randomly packed
spheres, called a “Round Cell” if it is of finite dimensions
or an IAS if it is of infinite extent. The essential informa-
tion about the Cell is stored in a matrix, [xn,m], where
the vectors xn define the positions of all atoms/spheres with
respect to the origin and m identifies the corresponding
type of the sphere, including its radius. It is a structure of
special geometrical and topological properties. As a rule,
the centres of any three adjacent spheres form triangles
of unequal sides due to (i) some/all spheres not touching
and (ii) different sphere radii. There is not a single incidence
of four adjacent spheres that are coplanar, in direct con-
trast to any of the crystallographic Bravais lattices. Conse-
quently, there is no translational symmetry in this
structure. The geometrical construction of IAS lends itself
readily to description and analysis by Voronoi tessellation
and associated Delauny simplexes. This includes structure

Fig. 1. Density of points on the surface of a sphere: (a) according to the equal area scheme [7] and (b) according to equal probability for the spherical
variables: 0 6 H 6 p,0 6 / 6 2p.
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